首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

2.
Greenhouse and field microplot studies were conducted to compare soybean shoot and root growth responses to root penetration by Heterodera glycines (Hg) and Meloidogyne incognita (Mi) individually and in combination. Soybean cultivars Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were selected for study. In the greenhouse, pot size and number of plants per pot had no effect on Hg or Mi penetration of Coker 237 roots; root weight was higher in the presence of either nematode species compared with the noninoculated controls. In greenhouse studies using a sand or soil medium, and in field microplot studies, each cultivar was grown with increasing initial population densities (Pi) of Hg or Mi. Interactions between Hg and Mi did not affect early plant growth or number of nematodes penetrating roots. Root penetration was the only response related to Pi. Mi penetration was higher in sand than in soil, and higher in the greenhouse than in the field, whereas Hg penetration was similar under all conditions. At 14 days after planting, more second-stage juveniles were present in roots of susceptible than in roots of resistant plants. Roots continued to lengthen in the greenhouse in the presence of either Mi or Hg regardless of host genotype, but only in the presence of Mi in microplots; otherwise, responses in field and greenhouse studies were similar and differed only in magnitude and variability.  相似文献   

3.
The effects of host genotype and initial nematode population densities (Pi) on yield of soybean and soil population densities of Heterodera glycines (Hg) race 3 and Meloidogyne incognita (Mi) race 3 were studied in a greenhouse and field microplots in 1983 and 1984. Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were planted in soil infested with 0, 31, or 124 eggs of Hg and Mi, individually and in all combinations, per 100 cm³ soil. Yield responses of the soybean cultivars to individual and combined infestations of Hg and Mi were primarily dependent on soybean resistance or susceptibility to each species separately. Yield of Centennial was stimulated or unaffected by nematode treatments, yield of Braxton was suppressed by Hg only, and yield suppressions caused by Hg and Mi were additive and dependent on Pi for Coker 237. Other plant responses to nematodes were also dependent on host resistance or susceptibility. Population densities of Mi second-stage juveniles (J2) in soil were related to Mi Pi and remained constant in the presence of Hg for all three cultivars. Population densities of Hg J2 on the two Hg-susceptible Cultivars, Braxton and Coker 237, were suppressed in the presence of Mi at low Hg Pi.  相似文献   

4.
5.
N-Viro Soil (NVS) is an alkaline-stabilized municipal biosolid that has been shown to lower population densities and reduce egg hatch of Heterodera glycines and other plant-parasitic nematodes; but the mechanism(s) of nematode suppression of this soil amendment are unknown. This study sought to identify NVS-mediated changes in soil chemical properties and their impact upon H. glycines and Meloidogyne incognita mortality. N-Viro Soil was applied to sand in laboratory assays at 0.5%, 1.0%, 2.0%, and 3.0% dry w/w with a nonamended treatment as a control. Nematode mortality and changes in sand-assay chemical properties were determined 24 hours after incubation. Calculated lethal concentration (LC90) values were 1.4% w/w NVS for second-stage juveniles of both nematode species and 2.6 and >3.0% w/w NVS for eggs of M. incognita and H. glycines, respectively. Increasing rates of NVS were strongly correlated (r² = 0.84) with higher sand solution pH levels. Sand solution pH levels and, to a lesser extent, the production of ammonia appeared to be the inorganic chemical-mediated factors responsible for killing plant-parasitic nematodes following amendment with NVS.  相似文献   

6.
In experiments on competition between Pratylenchus neglectus and Meloidogyne chitwoodi in barley, the species that parasitized the roots first inhibited penetration by the latter species. Prior presence of P. neglectus impeded the development of M. chitwoodi. Pratylenchus neglectus reduced egg production, final population levels, and reproductive index of M. chitwoodi. The reduction was linearly related to initial population densities of P. neglectus. Initial population densities of M. chitwoodi had no effect on final population levels of P. neglectus. Carbon assimilation by barley plants was reduced when either nematode species was present alone, but not when both were present together. Both nematode species assimilated lower amounts of carbon when present together than when present alone. A split-root experiment demonstrated that translocatable chemicals were not involved in the competition between the two species.  相似文献   

7.
Experiments were conducted to determine the relationship between time of infection by Heterodera glycines and soybean growth in the greenhouse and yield of plants grown in the field. Soybean cultivar Essex seedlings growing in the greenhouse were inoculated with H. glycines at 2, 4, or 6 weeks after planting. Seedling growth was inhibited by H. glycines infection at 2 or 4 weeks after planting but not at 6 weeks. Infection of Essex by H. glycines in the field was delayed 2-6 weeks by nematicides. Yields were significantly increased when H. glycines infection was delayed 2 weeks by nematicide treatment. Essex yields were highest when infection was delayed 6 weeks, equalling the yield of the H. glycines-resistant cultivar Asgrow 5474. The effect of H. glycines on soybean growth in the greenhouse and yields in the field declined when infection was delayed 6 weeks. Thus, soybean sensitivity to H. glycines seemed to diminish with age of the soybean plants.  相似文献   

8.
9.
Brassicaceous seed meals are the residual materials remaining after the extraction of oil from seeds; these seed meals contain glucosinolates that potentially degrade to nematotoxic compounds upon incorporation into soil. This study compared the nematode-suppressive ability of four seed meals obtained from Brassica juncea 'Pacific Gold', B. napus 'Dwarf Essex' and 'Sunrise', and Sinapis alba 'IdaGold', against mixed stages of Pratylenchus penetrans and Meloidogyne incognita second-stage juveniles (J2). The brassicaceous seed meals were applied to soil in laboratory assays at rates ranging from 0.5 to 10.0% dry w/w with a nonamended control included. Nematode mortality was assessed after 3 days of exposure and calculated as percentage reduction compared to a nonamended control. Across seed meals, M. incognita J2 were more sensitive to the brassicaceous seed meals compared to mixed stages of P. penetrans. Brassica juncea was the most nematode-suppressive seed meal with rates as low as 0.06% resulting in > 90% suppression of both plant-parasitic nematodes. In general B. napus 'Sunrise' was the least nematode-suppressive seed meal. Intermediate were the seed meals of S. alba and B. napus 'Dwarf Essex'; 90% suppression was achieved at 1.0% and 5.0% S. alba and 0.25% and 2.5% B. napus 'Dwarf Essex', for M. incognita and P. penetrans, respectively. For B. juncea, seed meal glucosinolate-degradation products appeared to be responsible for nematode suppression; deactivated seed meal (wetted and heated at 70 °C for 48 hr) did not result in similar P. penetrans suppression compared to active seed meal. Sinapis alba seed meal particle size also played a role in nematode suppression with ground meal resulting in 93% suppression of P. penetrans compared with 37 to 46% suppression by pelletized S. alba seed meal. This study demonstrates that all seed meals are not equally suppressive to nematodes and that care should be taken when selecting a source of brassicaceous seed meal for plant-parasitic nematode management.  相似文献   

10.
On a few occasions, soybeans with broken root tips were included in tests to evaluate resistance to Heterodera glycines. Although females developed on these plants, the numbers tended to be lower than on similarly treated intact roots. To test the possibility that removal of the root meristem affected nematode development, a culture system using pruned soybeans was devised that permitted access to the roots without disturbing the plants. Treatments included removal of 2 mm of root tip at various times ranging from 24 hours before to 10 days after inoculation, or roots left intact. In each experiment, all roots were inoculated at the same time with equal numbers of freshly hatched second-stage juveniles of Heterodera glycines. No differences in nematode development were detected in plants with root tips removed after inoculation compared to the control. When tips were removed at or before inoculation, fewer juveniles entered roots and relatively fewer nematodes developed. Penetration levels and development correlated with root tip removal such that progressively fewer nematodes entered roots and relatively greater numbers of nematodes remained undeveloped as the time interval between root tip removal and inoculation was increased.  相似文献   

11.
Four of five geographical isolates of Heterodera glycines from Indiana classified as Race 3 using standard differentials showed many differences when classified using another group of differentials comprised of five soybean breeding lines and cultivars. Two isolates from northern Indiana produced cysts on more of the differentials tested than did three isolates from southern Indiana, suggesting that potential resistant lines should be tested on a range of H. glycines populations originating from the areas for which cultivars are being developed.  相似文献   

12.
Eighteen soybean fields, six each with race 3, race 4, or Bedford population of Heterodera glycines, were selected for testing of host variability. Each field was divided into three sections, and a bulk soil sample was taken from each section. The 54 bulk soil populations (BSP) and 270 single cyst populations (SCP) were subjected to race determination tests. Tests of the 18 BSP and 90 SCP from the race 3 fields revealed that race 3 was the predominant race; however, 68 of the populations tested were other races. Tests of the 18-BSP and 90 SCP from race 4 fields demonstrated that races 2 and 4 were predominant, with 38 and 39 populations; respectively. Tests of the 18 BSP and 90 SCP from the Bedford population fields revealed tremendous variability. Races 2, 4, and 6 were the predominant races, with 32, 31, and 28 populations, respectively. These results indicate that of the three races studied, the Bedford population is the most variable, race 3 shows considerable variability, and race 4 shows very little.  相似文献   

13.
The effect of soybean genotype on competition between Meloidogyne incognita race 2 (Mi) and Rotylenchulus reniformis (Rr) was evaluated in greenhouse and microplot replacement series experiments. Soil in pots containing seedlings of ''Davis'' (susceptible to Mi) or ''Buckshot 66'' (resistant to Mi) was infested with 1,000 vermiform individuals in the following Mi:Rr ratios: 0:0, 100:0, 75:25, 50:50, 25:75, or 0:100. After 91 days, the relative nematode yields (number of nematodes in mixed culture divided by the number in nonmixed culture) of each species were calculated based on soil and root nematode populations expressed as nematodes per gram of dry root tissue. To define the relationship between the two species, calculated relative nematode yields were compared with a theoretical noncompetition model using lack-of-fit regression. In the greenhouse, Mi populations on ''Davis'' were stimulated in the presence of Rr. In microplots, low Mi and Rr population densities likely resulted from severe galling and destruction of feeder roots that probably occurred early in the season. Enhanced susceptibility to Mi was not observed on ''Buckshot 66'', which remained resistant to Mi even when colonized by Rr. Host resistance is a key factor in determining the nature of the relationship between Mi and Rr.  相似文献   

14.
Seven soybeans were selected from 200 entries evaluated for tolerance to soybean cyst nematode (SCN), Heterodera glycines. Tolerance to SCN was measured by comparing the seed yield from aldicarb-treated vs. nontreated plots. A yield response index (YRI) was calculated for each entry: YRI = (seed yield from nontreated plot/seed yield from treated plot) × 100. The soybean entries Coker 156, PI 97100, and S79-8059 exhibited high tolerance (YRI) to SCN when compared to Essex even though they became heavily infected with SCN. Tolerance in soybeans to SCN may be useful in pest management programs designed to stabilize soybean yield.  相似文献   

15.
Oxamyl coated on soybean (Glycine max (L.) Merr. cv. Elgin) seeds in solutions of 20, 40, 80, and 160 mg/ml had no serious deleterious effects on seedling emergence and growth when planted in sterile soil. Seedling emergence on day 3 was less than that of the uncoated control, but by day 7 emergence was equal to, or greater than, the control. Shoot and root growth from seed coated with oxamyl in 40 and 80 mg/ml solutions was greater than that of the control. In soil infested with soybean cyst nematode, Heterodera glycines, shoot weight of soybean plants from seeds coated with oxamyl in 80 mg/ml solution was 11 and 9% greater at weeks 3 and 7, respectively, than from uncoated seeds. Numbers of juveniles (J3 and J4) and adults of H. glycines observed on the roots of plants from oxamyl-coated seeds were 83, 42, and 49% less at weeks 3, 5, and 7, respectively, than numbers on the roots of the untreated control. Numbers of J2 extracted from the roots of plants from oxamyl-coated seeds were 75% less at weeks 5 and 7 than those extracted from roots of uncoated seeds. The numbers of J2 extracted from the soil planted to oxamyl-coated seeds were 51 and 33% less at weeks 5 and 7, respectively, than from soil planted to uncoated seed.  相似文献   

16.
Interactions among Meloidogyne incognita, Pratylenchus brachyurus, and soybean genotype on plant growth and nematode reproduction were studied in a greenhouse. Coker 317 (susceptible to both nematodes) and Gordon (resistant to M. incognita, susceptible to P. brachyurus) were inoculated with increasing initial population densities (Pi) of both nematodes individually and combined. M. incognita and P. brachyurus individually usually suppressed shoot growth of both cultivars, but only root growth on Coker 317 was influenced by a M. incognita × P. brachyurus interaction. Reproduction of both nematodes, although dependent on Pi, was mutually suppressed on Coker 317. P. brachyurus reproduced better on Gordon than on Coker 317 but did not affect resistance to M. incognita. Root systems of Coker 317 were split and inoculated with M. incognita or P. brachyurus or both to determine the nature of the interaction. M. incognita suppressed reproduction of P. brachyurus either when coinhabiting a half-root system or infecting opposing half-root systems; however, P. brachyurus affected M. incognita only if both nematodes infected the same half-root system.  相似文献   

17.
Growth room and field experiments were conducted to determine the influence of soil temperature and soybean phenology on dormancy induction of a North Carolina population of Heterodera glycines race 1. Three temperature regimes and two photoperiods to regulate plant phenology were investigated in growth rooms. H. glycines hatch was greatest from the 26 and 22 C (day and night) temperature treatment, intermediate at 22 and 18 C, and least from the decreasing regime (26 and 22 C, 22 and 18 C, and 18 and 14 C). More eggs hatched and greater nematode reproduction occurred on pod-producing soybeans than on those that remained vegetative. In the field study, hatching patterns were not different between depodded and naturally senescing soybeans nor between the different maturity groups of soybean cultivars (groups V through VIII). Egg hatch (9-16%) was greatest in August and September when mean soil temperatures were between 25 and 29 C. Hatch declined to 1% in vitro and was not detectable in the bioassay in November. Greatest nematode numbers were observed on the latest maturing cultivar (group VIII) and fewest on the cultivar which matured earliest (group V). Decreasing temperature appears to be more important than soybean phenology in dormancy induction of H. glycines.  相似文献   

18.
Heterodera glycines was identified in North Carolina in 1954, although symptoms of the disease were noted in the state at least 8 years earlier. Crop rotation experiments designed to develop management systems were initiated in 1956. Two or more years in production of a nonhost crop resulted in decreases of the nematode to low or undetectable levels with acceptable subsequent yields of soybean (Glycine max). Because of almost complete dependence on resistant cultivars and (or) nematicides for nematode control, crop rotation experiments were not conducted from 1962 to 1980. Research on control of H. glycines, beginning in 1981, emphasized biological and ecological aspects of the nematode in order to determine cropping systems that restrict the nematode to nondamaging levels. Mortality during embryogenesis was high at temperatures above 30 C. Hatching of eggs occurs readily in May and June. Postinfection development takes 2-3 weeks at weekly mean temperatures of 22-29 C and is slow above and below those temperatures. Egg production is high during the late growing season. Some cultural practices such as planting early maturing cultivars in mid-to-late June and rotation with a nonhost effectively keeps populations at low levels.  相似文献   

19.
A 2-year study was conducted in field microplots to determine the relative importance of soybean phenology and soil temperature on induction of dormancy in Heterodera glycines in Missouri. Four near-isogenic soybean lines differing for maturity date were planted in microplots infested with a race 5 isolate of H. glycines. Soil temperature was monitored at a depth of 15 cm. Eggs of H. glycines, extracted from cysts collected monthly from each microplot, were used in hatching tests and bioassays to determine dormancy. Egg hatching and second-stage juvenile (J2) infectivity rates decreased sharply from their highest levels in midsummer (July-August) to a low level by October of each year and remained low (< 10% hatching and < 0.2 J2/cm root) until May or June of the following year. The patterns of numbers of females and eggs in the bioassays were similar. The decreases were not related to soil temperature and did not differ consistently among soybean isolines. The monophasic changes in all nematode responses with peak midsummer rates suggest that H. glycines produces one primary generation per year in central Missouri. Changes in hatching rates and the timing of minimum and maximum rates suggested that H. glycines eggs exhibit more than one type of dormancy.  相似文献   

20.
A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; ''Pickett'' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and ''Pickett'' but not in PI 209332.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号