首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular Biology Reports - Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to...  相似文献   

2.
Two cotton vacuolar-invertase genes were identified and sequenced. Both genes had seven exons, including an unusually small second exon typical of acid invertases. These genes encode peptides with many features shared by acid invertases from other species including, leader sequences that probably target the peptide to the vacuole, active site motifs and substrate binding motifs. Expression analyses indicated that one of the genes was expressed in roots during the starch filling stage of development. However, expression of the same gene fluctuated during the starch utilization stage of development. Therefore this gene was unlikely to play a role in determining sink strength of this tissue. Both genes were expressed in elongating fibers where they were likely to play a role in cell expansion. The invertase gene uniquely expressed in fiber had a simple sequence repeat (SSR) in the third intron that was polymorphic among various cotton species. An EST was identified with an expansion of the SSR that included the third intron indicating this SSR is associated with a splice variant. The polymorphic SSR may be useful in investigating the function of this gene in fiber development.  相似文献   

3.
4.
5.
An RFLP linkage map of Upland cotton, Gossypium hirsutum L.   总被引:15,自引:0,他引:15  
 Ninety-six F2.F3 bulked sampled plots of Upland cotton, Gossypium hirsutum L., from the cross of HS46×MARCABUCAG8US-1-88, were analyzed with 129 probe/enzyme combinations resulting in 138 RFLP loci. Of the 84 loci that segregated as co-dominant, 76 of these fit a normal 1 :  2 : 1 ratio (non-significant chi square at P=0.05). Of the 54 loci that segregated as dominant genotypes, 50 of these fit a normal 3: 1 ratio (non-significant chi square at P=0.05). These 138 loci were analyzed with the MAPMAKER∖ EXP program to determine linkage relationships among them. There were 120 loci arranged into 31 linkage groups. These covered 865 cM, or an estimated 18.6% of the cotton genome. The linkage groups ranged from two to ten loci each and ranged in size from 0.5 to 107 cM. Eighteen loci were not linked. Received: 31 March 1998 / Accepted: 29 April 1998  相似文献   

6.
Summary Two diverse parents of upland cotton namely J.34 and I.C. 1926 were crossed. A comparison between biparental intermated progenies and F3 families indicated alteration of correlation coefficient between yield and halo length. The significant negative correlation in F3 population between these two attributes changed to a positive but non significant one in biparental intermated progenies. A change in correlation coefficients was expected due to breakage of linkage upon intermating. An increase in the correlation coefficients could also be expected when linkages are predominantly in the repulsion phase. It is suggested that intermating in early generations coupled with selection of desirable segregants may prove a useful method for improving yield and quality simultaneously. The diallel selective mating system may also supplement intermating to improve yield and quality in cotton.Part of Ph.D. Thesis submitted to the Haryana Agricultural University. Hissar-125004, India  相似文献   

7.
The present study was carried out to elucidate the mechanism of seed deterioration in two cotton (Gossypium hirsutum L.) cultivars (HS6 and H1098). The seeds were artificially aged at 40 +/- 1 degree C and 100% relative humidity for 4 days. In both cultivars, germinability decreased, whereas membrane deterioration, as assayed by electrical conductivity of the seed leachates, increased progressively with artificial ageing. The decrease in germinability was well correlated with increased accumulation of total peroxide and malondialdehyde content and decreased activities of antioxidant enzymes peroxidase, catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase. Hydropriming for 2 h and ascorbic acid priming for 12 h partially maintained germination and the activities of various antioxidant enzymes under artificial ageing and the accumulation of peroxide and MDA content was decreased. The results suggest that cotton seed deterioration during accelerated ageing is closely related to a decrease in activities of various peroxide scavenging enzymes and to lipid peroxidation.  相似文献   

8.
Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.  相似文献   

9.
10.
Nitrogen (N) is an essential macronutrient and an important factor limiting agricultural productivity. N deficient or excess conditions often occur during the cotton growth season and incorrect N application may affect cotton fiber yield and quality. Here, the influence of N stress on the cotton fiber proteome was investigated by two-dimensional gel electrophoresis and mass spectrometry. The results indicated that N application rate affects nitrogen accumulation in fiber cells and fiber length. The proteins differentially expressed during N stress were mainly related to plant carbohydrate metabolism, cell wall component synthesis and transportation, protein/amino acid metabolism, antioxidation and hormone metabolism. The most abundant proteins were C metabolism-related. Ten days post anthesis is a critical time for fiber cells to perceive environmental stress and most proteins were suppressed in both N deficient and N excess conditions at this sampling stage. However, several N metabolism proteins were increased to enhance N stress tolerance. Excess N may suppress carbohydrate/energy metabolism in early fiber development much like N deficiency. These results have identified some interesting proteins that can be further analyzed to elucidate the molecular mechanisms of N tolerance.  相似文献   

11.
Tian J  Zhang X  Liang B  Li S  Wu Z  Wang Q  Leng C  Dong J  Wang T 《PloS one》2010,5(12):e14218

Background

Programmed cell death plays an important role in mediating plant adaptive responses to the environment such as the invasion of pathogens. Verticillium wilt, caused by the necrotrophic pathogen Verticillium dahliae, is a serious vascular disease responsible for great economic losses to cotton, but the molecular mechanisms of verticillium disease and effective, safe methods of resistance to verticillium wilt remain unexplored.

Methodology/Principal Findings

In this study, we introduced baculovirus apoptosis inhibitor genes p35 and op-iap into the genome of cotton via Agrobacterium-mediated transformation and analyzed the response of transgenic plants to verticillium wilt. Results showed that p35 and op-iap constructs were stably integrated into the cotton genome, expressed in the transgenic lines, and inherited through the T3 generation. The transgenic lines had significantly increased tolerance to verticillium wilt throughout the developmental stages. The disease index of T1–T3 generation was lower than 19, significantly (P<0.05) better than the negative control line z99668. After treatment with 250 mg/L VD-toxins for 36 hours, DNA from negative control leaves was fragmented, whereas fragmentation in the transgenic leaf DNA did not occur. The percentage of cell death in transgenic lines increased by 7.11% after 60 mg/L VD-toxin treatment, which was less than that of the negative control lines''s 21.27%. This indicates that p35 and op-iap gene expression partially protects cells from VD-toxin induced programmed cell death (PCD).

Conclusion/Significance

Verticillium dahliae can trigger plant cells to die through induction of a PCD mechanism involved in pathogenesis. This paper provides a potential strategy for engineering broad-spectrum necrotrophic disease resistance in plants.  相似文献   

12.
根据棉花GhCCR1基因的cDNA序列设计引物,采用PCR技术从棉花中克隆了GhCCR1基因的DNA序列,并采用半定量RT-PCR方法分析了GhCCR1基因在不同发育阶段棉纤维中的表达情况.结果表明:GhCCR1编码区DNA序列长度为1 161 bp,包含4个外显子和3个内含子,内含子富含AT,所有外显子/内含子交接点都遵从gt/ag剪接规则.半定量RT-PCR检测表明,GhCCR1基因在不同发育阶段的棉纤维中均有表达,在开花后20 d的棉纤维中表达量最高,说明该基因可能参与调控棉纤维细胞的伸长和次生壁的增厚过程.  相似文献   

13.
14.
Summary Heterosis (over mid parent) and useful heterosis (over commercial variety H14) estimates were obtained from a line x tester analysis of crosses involving thirteen diverse female parents with two locally adapted varieties H14 (local standard) and J34. Marked heterosis was observed for seed cotton yield, boll number and halo length. The values of positive heterosis and useful heterosis for seed cotton yield ranged from 28.1 to 87.0% and 20.1 to 45.5%, respectively. The overall study of heterosis revealed that female parents PRS-72 (USSR), 5904F (USSR) and MCU-5 (Madras Cambodian Uganda Selection, Coimbatore) were among the top three females, showing considerable heterosis in crosses with H14 and J34 for seed cotton yield and fibre properties. The practical difficulties in exploiting the phenomenon of heterosis and possible experimental approaches in upland cotton are discussed.  相似文献   

15.
Rapid in-vitro plant regeneration of cotton (Gossypium hirsutum L.)   总被引:5,自引:0,他引:5  
A rapid, clonal propagation procedure has been developed to regenerate mature cotton (Gossypium hirsutum L.) plants from pre-existing meristems that were excised from in-vitro-grown tissues. This plant regeneration procedure was applicable to diverse cotton germplasms and required specific concentrations of 6-benzylaminopurine (BA) depending on the origin of the meristems. All shoots regenerated directly without a callus phase. Screening BA concentrations (0.0–10.0 μm) demonstrated that shoot meristems (apices), secondary leaf nodes, primary leaf nodes, and cotyledonary nodes derived from in-vitro-grown 28-day-old seedlings (Paymaster HS26) varied in their ability to form elongated shoots depending on the level of BA. Indicative of a germplasm-independent procedure, a BA concentration screen (0.0, 0.3, 1.0 μm) demonstrated that explants with pre-existing meristems, excised from diverse germlines, were also able to form elongated shoots at 0.3 μm BA. In most cases, elongated shoots derived from this procedure were rooted by a two-step process: an in-vitro maturation step (Murashige and Skoog medium-activated charcoal) followed by planting into soil after basal application of Rootone. This BA plant regeneration procedure was rapid, reproducible, and highly efficient for Stoneville 7A, Paymaster HS26, and other high-fiber-yielding germlines. Regenerated plants were phenotypically normal and all of the mature plants regenerated to date have initiated flowers and set viable R1 seeds. Received: 15 March 1997 / Revision received: 28 August 1997 / Accepted: 5 September 1997  相似文献   

16.
Transformation of cotton (Gossypium hirsutum L.) via particle bombardment   总被引:1,自引:0,他引:1  
Embryogenic suspension cultures of cotton (Gossypium hirsutum L.) were subjected to particle bombardment, where high density particles carrying plasmid DNA were accelerated towards the embryogenic plant cells. The plasmid DNA coating the particles encoded hygromycin resistance. One to two weeks following bombardment, embryogenic cotton cells were placed in proliferation medium containing 100 g/ml hygromycin. Clumps of tissue which grew in the presence of hygromycin were subcultured at low density into fresh hygromycin-containing proliferation medium. Following sequential transfer of embryogenic tissue to development and then germination media, plants were recovered from transgenic embryogenic tissue. Southern hybridization confirmed the presence of the hygromycin resistance gene in embryogenic suspension culture tissue and regenerated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - Aph IV aminoglycoside phosphotransferase type IV Salaries and research support were provided by State and Federal funds appropriated to OSU/OARDC and USDA-ARS. Mention of trademark or proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC or USDA, and also does not imply approval to the exclusion of other products that may also be suitable. Journal Article No. 354-89  相似文献   

17.
Flowering in cotton (Gossypium hirsutum L.) is a sensitive stage to water-deficit stress, but the effects on metabolism are not well understood. The objective of this study was to monitor gas exchange responses of cotton plants under conditions of limited water supply and evaluate the effects on the carbohydrate concentrations and glutathione reductase levels in the cotton flower. Growth chamber experiments were conducted in 2008 and 2009, with normal day/night conditions of 32/24 °C and optimum quantities of Hoagland's nutrient solution applied until flowering. Treatments were imposed at flowering and consisted of control (Control), where optimum quantities of water were applied, and water stress (WS) where 50% of optimum quantity of water was supplied. Water-deficit stress resulted in a significant decrease in leaf stomatal conductance. Leaf photosynthetic and respiration rates were similarly decreased compared to the control. Ovary and style water potential of water-stressed leaves were significantly higher compared to the water potential of water stressed leaves, indicating that cotton flowers are fairly resistant to changes in the water status of the plant. However, carbohydrate concentrations of water-stressed pistils (ovary and style) were significantly increased compared to the control and a similar pattern was observed in the levels of glutathione reductase of water-stressed pistils. In conclusion, water-deficit stress during flowering resulted in significant decreases in leaf gas exchange functions as well as leaf water potential. Cotton pistils appeared to be less sensitive since they were able to maintain water potential similar to the control under limited water supply and increase glutathione reductase levels. However, pistil carbohydrate metabolism was significantly affected resulting in accumulation of both hexose and sucrose indicating a perturbation in sucrose cleaving and hexose utilizing enzymes that could potentially have as a consequence a decrease in fertilization and seed set efficiency.  相似文献   

18.
Tissue culture methods for improvement of cotton has lagged seriously compared to other major crops. A method for regeneration of cotton which includes a morphogenetically competent cell suspension was needed to facilitate selection of stress-resistant variants and gene manipulation. Preliminary screening of eight strains of Gossypium hirsutum L. for embryogenic potential resulted in the production of somatic embryos in all strains. Coker 312 was selected for use in the development of a model regeneration system for G. hirsutum. Calli were initiated from hypocotyl tissues of 3-day-old-seedlings. Globular embryos were present after six weeks in culture. Calli were subcultured to liquid suspension in growth regulator-free medium. After three to four weeks, suspensions were sieved to collect globular and heart stage embryos. Collected embryos developed further when plated onto semi-solid medium. To induce germination and plantlet growth, mature embryos were placed on sterile vermiculite saturated with medium. Upon development of roots and two true leaves, plantlets were potted in peat and sand, and hardened. Mature plants and progeny have been obtained with this procedure. A high percentage of infertile plants was observed among the regenerants.Abbreviations NAA 1 naphthaleneacetic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - MS Murashige and Skoog - BA 6 benzylamino purine - 2i P N6-(2-isopentenyladenine  相似文献   

19.
棉花咖啡酰辅酶A-O-甲基转移酶基因的克隆及表达   总被引:3,自引:2,他引:3  
根据棉花纤维特异表达cDNA文库分析得到的咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)基因EST序列设计引物,采用RT-PCR技术首次从棉花中克隆了一个CCoAOMT基因,命名为GhCCoAOMT1(GenBank登录号为FJ848871).研究结果表明:GhCCoAOMT1基因cDNA全长960 bp,具有一个753 bp的开放阅读框,5'非编码区为9 bp,3'非编码区为198 bp,编码250个氨基酸,预测分子量约为28.306 kDa,等电点为5.39.利用PCR方法克隆了GhCCoAOMT1基因的基因组序列,长度为1 311 bp,包含5个外显子和4个内含子.氨基酸同源性分析发现,GhCCoAOMT1与来自毛白杨、烟草和苎麻的CCoAOMT同源性较高.半定量RT-PCR检测表明,GhCCoAOMT1基因在棉花各个组织中都有表达,其中茎部的表达量最高,其次表达量依次为根>花瓣>子叶>10 d纤维>雄蕊>胚珠>叶.  相似文献   

20.
卤代酸脱卤酶(HAD)在调节植物生长发育和响应磷缺乏胁迫方面具有重要作用。该研究基于前期陆地棉根部低磷胁迫基因差异表达序列数据分析,以陆地棉新陆早19为材料,对GhPS2基因进行克隆,并对其基因组DNA与cDNA测序分析,借助生物信息学方法分析GhPS2的基因结构和进化关系;采用荧光定量PCR(qRT-PCR)的方法检测该基因于根、茎、叶、花4个器官的基因表达量变化和低磷胁迫下0,4,12,24,72 h的相对表达。结果表明,(1)成功获得陆地棉GhPS2基因,该基因的开放阅读框序列长度813 bp,编码270个氨基酸,存在3个内含子,属于HAD家族,其中存在1个保守结构域名为Put-Phosphatase。(2)序列比对和进化分析显示,陆地棉GhPS2与其他棉种PS2、榴莲PS2的相似性分别为93%和83.15%。(3)qRT-PCR结果表明,GhPS2基因在根中表达量最高,其次是茎和花,在叶中表达量最低,该基因在低磷胁迫4 h时相对表达量达到最高值,低磷胁迫72 h时是适磷处理的16.66倍。研究表明,GhPS2基因属于低磷胁迫响应基因,在棉花响应低磷胁迫过程中具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号