共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6 总被引:1,自引:0,他引:1
Nadim Tayeh Nasser Bahrman Hélène Sellier Aurélie Bluteau Christelle Blassiau Jo?lle Fourment Arnaud Bellec Frédéric Debellé Isabelle Lejeune-Hénaut Bruno Delbreil 《BMC genomics》2013,14(1)
3.
To evaluate the effect of genetic background on high-density lipoprotein cholesterol (HDL) levels in Soat1(-/-) mice, we backcrossed sterol O-acyltransferase 1 (Soat1)(-/-) mice, originally reported to have elevated HDL levels, to C57BL/6 mice and constructed a congenic strain with only a small region (3.3Mb) of 129 alleles, specifically excluding the nearby apolipoprotein A-II (Apoa2) gene from 129. HDL levels in these Soat1(-/-) mice were no different from C57BL/6, indicating that the passenger gene Apoa2 caused the previously reported elevation of HDL in these Soat1(-/-) mice. Because many knockouts are made in strain 129 and then subsequently backcrossed into C57BL/6, it is important to identify quantitative trait loci (QTL) that differ between 129 and C57BL/6 so that one can guard against effects ascribed to a knockout but really caused by a passenger gene from 129. To provide such data, we generated 528 F(2) progeny from an intercross of 129S1/SvImJ and C57BL/6 and measured HDL concentrations in F(2) animals first fed chow and then atherogenic diet. A genome wide scan using 508 single-nucleotide polymorphisms (SNPs) identified 19 QTL, 2 of which were male specific and 2 were female specific. Using comparative genomics and haplotype analysis, we narrowed QTL on chromosomes 3, 5, 8, 17, and 18 to 0.5, 6.3, 2.6, 1.1, and 0.6 Mb, respectively. These data will serve as a reference for any effort to test the impact of candidate genes on HDL using a knockout strategy. 相似文献
4.
Xia Tao Yuan Jihong Gan Li Feng Bin Zhu Yi Chen Xiaodong Zhang Peichao Zaiqing Yang 《遗传、选种与进化》2008,40(2):215-226
The PAT proteins, named after the three PLIN/ADRP/TIP47 (PAT) proteins, PLIN for perilipin, ADRP for adipose differentiation-related protein and TIP47 for tail-interacting protein of 47 kDa, now officially named M6PRBP1 for mannose-6-phosphate receptor binding protein 1, is a set of intracellular lipid droplet binding proteins. They are localized in the outer membrane monolayer enveloping lipid droplets and are involved in the metabolism of intracellular lipid. This work describes the cloning and sequencing of porcine PLIN and M6PRBP1 cDNAs, the chromosome mapping of these two genes, as well as the expression pattern of porcine PAT genes. Sequence analysis shows that the porcine PLIN cDNA contains an open reading frame of 1551 bp encoding 516 amino acids and that the porcine M6PRBP1 cDNA contains a coding region of 1320 bp encoding 439 amino acids. Comparison of PLIN and M6PRBP1 amino-acid sequences among various species reveals that porcine and bovine proteins are the most conserved. Porcine PLIN and M6PRBP1 genes have been mapped to pig chromosomes 7 and 2, respectively, by radiation hybrid analysis using the IMpRH panel. Expression analyses in pig showed a high expression of PLIN mRNA in adipose tissue, M6PRBP1 mRNA in small intestine, kidney and spleen and ADRP mRNA in adipose tissue, lung and spleen. 相似文献
5.
A. Fernández-Rodríguez C. Rodríguez L. Varona I. Balcells J. L. Noguera C. Óvilo A. I. Fernández 《Animal genetics》2010,41(1):73-80
The previous results from a genome scan for total number of piglets born and number of piglets born alive in a F2 Iberian by Meishan intercross showed several single and epistatic QTL. One of the most interesting results was obtained for SSC12, where two QTL affecting both traits showed epistatic interaction. In this study, we proposed two genes ( SLC9A3R1 and NOS2 ) as biological and potentially positional candidates underlying these QTL. Both cDNAs were characterized and 23 polymorphisms were detected. A chromosome scan was conducted with 12 markers, plus one SNP in SLC9A3R1 and one in NOS2, covering 110 cM of SSC12. The epistatic QTL (QTL1 at 15 cM and QTL2 at 97 cM) were confirmed, and SLC9A3R1 and NOS2 were mapped around the QTL1 and QTL2 regions respectively. Several SNPs in both genes were tested with standard animal model and marker assisted association tests. The most significant results were obtained with the NOS2 haplotype defined by one missense SNP c.2192C > T (Val to Ala) and a 15 bp duplication at the 3'UTR. This duplication seems to include AU-rich elements, and could be a target site for miRNA, therefore there are statistical and biological indications to consider this haplotype as the potential causal mutation underlying QTL2. SLC9A3R1 results were not conclusive. Although the interaction between the SNPs was not significant, we cannot reject the possibility of interaction of the NOS2 haplotype with other polymorphisms closely linked to the SL9A3R1 SNPs analysed. 相似文献
6.
Muramatsu Y Yamada T Taniguchi Y Ogino T Kose H Matsumoto K Sasaki Y 《Biochemical and biophysical research communications》2005,331(4):1270-1276
The Otsuka Long-Evans Tokushima Fatty (OLETF) rat exhibits polygenic obesity, and one of quantitative trait loci (QTLs) responsible for a susceptibility to obesity in the OLETF, Nidd6/of, has been mapped to the approximately 10-cM genomic region between D1Rat166 and D1Rat90 on chromosome 1 in (OLETF x normal) F2 intercross. In this study, we have attempted to identify the causal gene for the Nidd6/of QTL. A Nidd6/of congenic strain, constructed by introgressing the OLETF allele on the mapped Nidd6/of region in the normal F344 rat strain, confirmed the existence of the Nidd6/of as obesity QTL. The Nidd6/of region was refined to a approximately 2.3-cM genomic region between D1Rat225 and D1Rat90, using informative recombinants selected from (Nidd6/of congenic x F344) F1 x Nidd6/of congenic backcross progenies. Among 46 genes located within the approximately 2.3-cM region, pancreatic lipase gene, Pnlip, was regarded as the most prominent and physiologically relevant positional candidate for the Nidd6/of QTL. We found that Pnlip possesses an OLETF allele-specific increase of mRNA levels in the pancreas, and that the OLETF allele is longer in variable number of tandem repeat (VNTR) within the 5'-flanking region than normal alleles. We further showed that the Nidd6/of QTL completely cosegregates with Pnlip VNTR in the informative recombinants from (Nidd6/of congenic x F344) F1 x Nidd6/of congenic backcross progenies. These results suggest that Pnlip is possible candidate for the Nidd6/of QTL. 相似文献
7.
Lagisz M Wen SY Routtu J Klappert K Mazzi D Morales-Hojas R Schäfer MA Vieira J Hoikkala A Ritchie MG Butlin RK 《Heredity》2012,108(6):602-608
Acoustic signals often have a significant role in pair formation and in species recognition. Determining the genetic basis of signal divergence will help to understand signal evolution by sexual selection and its role in the speciation process. An earlier study investigated quantitative trait locus for male courtship song carrier frequency (FRE) in Drosophila montana using microsatellite markers. We refined this study by adding to the linkage map markers for 10 candidate genes known to affect song production in Drosophila melanogaster. We also extended the analyses to additional song characters (pulse train length (PTL), pulse number (PN), interpulse interval, pulse length (PL) and cycle number (CN)). Our results indicate that loci in two different regions of the genome control distinct features of the courtship song. Pulse train traits (PTL and PN) mapped to the X chromosome, showing significant linkage with the period gene. In contrast, characters related to song pulse properties (PL, CN and carrier FRE) mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations. In previous studies, the pulse train traits have been found to vary substantially between Drosophila species, and so are potential species recognition signals, while the pulse traits may be more important in intra-specific mate choice. 相似文献
8.
Root Knot nematode (RKN; Meloidogyne spp.) is one of the most devastating parasites that infect the roots of hundreds of plant
species. RKN cannot live independently from their hosts and are the biggest contributors to the loss of the world''s primary foods.
RNAi gene silencing studies have demonstrated that there are fewer galls and galls are smaller when RNAi constructs targeted to
silence certain RKN genes are expressed in plant roots. We conducted a comparative genomics analysis, comparing RKN genes of
six species: Meloidogyne Arenaria, Meloidogyne Chitwoodi, Meloidogyne Hapla, Meloidogyne Incognita, Meloidogyne Javanica, and
Meloidogyne Paranaensis to that of the free living nematode Caenorhabditis elegans, to identify candidate genes that will be lethal to
RKN when silenced or mutated. Our analysis yielded a number of such candidate lethal genes in RKN, some of which have been
tested and proven to be effective in soybean roots. A web based database was built to house and allow scientists to search the data.
This database will be useful to scientists seeking to identify candidate genes as targets for gene silencing to confer resistance in
plants to RKN.
Availability
The database can be accessed from http://bioinformatics.towson.edu/RKN/ 相似文献9.
Gion Jean-Marc Rech Philippe Grima-Pettenati Jacqueline Verhaegen Daniel Plomion Christophe 《Molecular breeding : new strategies in plant improvement》2000,6(5):441-449
We used the single-strand conformation polymorphism (SSCP) technique to map eight genes on Eucalyptus urophylla and Eucalyptus grandis linkage maps. These included four genes involved in the common phenylpropanoid pathway (caffeic acid 3-0-methyltransferase, caffeoyl CoA 3-O-methyltransferase, 4-coumarate CoA ligase and phenylalanine ammonia-lyase), two genes involved in the `lignin specific' pathway (cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase), and two symbiosis regulated genes (EgHypar and EgTubA1). A novel source of variation which affects the SSCP pattern, i.e. the presence or absence of electrophoresis buffer upon loading the samples into the polyacrylamide gel, was found. The placement of these genes on the Eucalyptus maps was carried out using an interspecific hybrid mapping population. This will further facilitate the identification or exclusion of `positional' candidate genes for characterizing quantitative trait loci (QTL) for wood quality and vegetative propagation related traits. 相似文献
10.
Andrés JA Maroja LS Harrison RG 《Proceedings. Biological sciences / The Royal Society》2008,275(1646):1975-1983
In many animals, male seminal proteins influence gamete interactions and fertilization ability and are probably involved in barriers to gene flow between diverging lineages. Here we use a proteomic approach to identify seminal proteins that are transferred to females during copulation and that may be involved in fertilization barriers between two hybridizing field crickets (Gryllus firmus and Gryllus pennsylvanicus). Analyses of patterns of divergence suggest that much of the field cricket genome has remained undifferentiated following the evolution of reproductive isolation. By contrast, seminal protein genes are highly differentiated. Tests of selection reveal that positive selection is likely to be responsible for patterns of differentiation. Together, our observations suggest that some of the loci encoding seminal proteins may indeed play a role in fertilization barriers in field crickets. 相似文献
11.
Muñoz-Fambuena N Mesejo C González-Mas MC Primo-Millo E Agustí M Iglesias DJ 《Annals of botany》2011,108(3):511-519
Background and Aims
The presence of fruit has been widely reported to act as an inhibitor of flowering in fruit trees. This study is an investigation into the effect of fruit load on flowering of ‘Moncada’ mandarin and on the expression of putative orthologues of genes involved in flowering pathways to provide insight into the molecular mechanisms underlying alternate bearing in citrus.Methods
The relationship between fruit load and flowering intensity was examined first. Defruiting experiments were further conducted to demonstrate the causal effect of fruit removal upon flowering. Finally, the activity of flowering-related genes was investigated to determine the extent to which their seasonal expression is affected by fruit yield.Key Results
First observations and defruiting experiments indicated a significant inverse relationship between preceding fruit load and flowering intensity. Moreover, data indicated that when fruit remained on the tree from November onwards, a dramatic inhibition of flowering occurred the following spring. The study of the expression pattern of flowering-genes of on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (FT), SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1) and LEAFY (LFY) were negatively affected by fruit load. Thus, CiFT expression showed a progressive increase in leaves from off trees through the study period, the highest differences found from December onwards (10-fold). Whereas differences in the relative expression of SOC1 only reached significance from September to mid-December, CsAP1 expression was constantly higher in those trees through the whole study period. Significant variations in CsLFY expression only were found in late February (close to 20 %). On the other hand, the expression of the homologues of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS C (FLC) did not appear to be related to fruit load.Conclusions
These results suggest for the first time that fruit inhibits flowering by repressing CiFT and SOC1 expression in leaves of alternate-bearing citrus. Fruit also reduces CsAP1 expression in leaves, and the significant increase in leaf CsLFY expression from off trees in late February was associated with the onset of floral differentiation. 相似文献12.
Sergey A Fedotov Julia V Bragina Natalia G Besedina Larisa V Danilenkova Elena A Kamysheva Anna A Panova Nikolai G Kamyshev 《Fly》2014,8(3):176-187
Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination. 相似文献
13.
14.
15.
Lisa Klasson Nikhil Kumar Robin Bromley Karsten Sieber Melissa Flowers Sandra H Ott Luke J Tallon Siv G E Andersson Julie C Dunning Hotopp 《BMC genomics》2014,15(1)
Background
Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome.Results
Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F).Conclusions
This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users. 相似文献16.
17.
Honghao Lv Zhiyuan Fang Limei Yang Yangyong Zhang Qingbiao Wang Yumei Liu Mu Zhuang Yuhong Yang Bingyan Xie Bo Liu Jisheng Liu Jungen Kang Xiaowu Wang 《BMC genomics》2014,15(1)
Background
Cabbage Fusarium wilt is a major disease worldwide that can cause severe yield loss in cabbage (Brassica olerecea). Although markers linked to the resistance gene FOC1 have been identified, no candidate gene for it has been determined so far. In this study, we report the fine mapping and analysis of a candidate gene for FOC1 using a double haploid (DH) population with 160 lines and a F2 population of 4000 individuals derived from the same parental lines.Results
We confirmed that the resistance to Fusarium wilt was controlled by a single dominant gene based on the resistance segregation ratio of the two populations. Using InDel primers designed from whole-genome re-sequencing data for the two parental lines (the resistant inbred-line 99–77 and the highly susceptible line 99–91) and the DH population, we mapped the resistance gene to a 382-kb genomic region on chromosome C06. Using the F2 population, we narrowed the region to an 84-kb interval that harbored ten genes, including four probable resistance genes (R genes): Bol037156, Bol037157, Bol037158 and Bol037161 according to the gene annotations from BRAD, the genomic database for B. oleracea. After correcting the model of the these genes, we re-predicted two R genes in the target region: re-Bol037156 and re-Bol0371578. The latter was excluded after we compared the two genes’ sequences between ten resistant materials and ten susceptible materials. For re-Bol037156, we found high identity among the sequences of the resistant lines, while among the susceptible lines, there were two types of InDels (a 1-bp insertion and a 10-bp deletion), each of which caused a frameshift and terminating mutation in the cDNA sequences. Further sequence analysis of the two InDel loci from 80 lines (40 resistant and 40 susceptible) also showed that all 40 R lines had no InDel mutation while 39 out of 40 S lines matched the two types of loci. Thus re-Bol037156 was identified as a likely candidate gene for FOC1 in cabbage.Conclusions
This work may lay the foundation for marker-assisted selection as well as for further function analysis of the FOC1 gene. 相似文献18.
Pöggeler S 《Current Genomics》2011,12(2):95-103
Multicopper oxidases (MCO) catalyze the biological oxidation of various aromatic substrates and have been identified in plants, insects, bacteria, and wood rotting fungi. In nature, they are involved in biodegradation of biopolymers such as lignin and humic compounds, but have also been tested for various industrial applications. In fungi, MCOs have been shown to play important roles during their life cycles, such as in fruiting body formation, pigment formation and pathogenicity. Coprophilous fungi, which grow on the dung of herbivores, appear to encode an unexpectedly high number of enzymes capable of at least partly degrading lignin. This study compared the MCO-coding capacity of the coprophilous filamentous ascomycetes Podospora anserina and Sordaria macrospora with closely related non-coprophilous members of the order Sordariales. An increase of MCO genes in coprophilic members of the Sordariales most probably occurred by gene duplication and horizontal gene transfer events. 相似文献
19.
Jun Ho Kim Eun Sun Jung Chul-Hyun Kim Hyeon Youn Hwa Rye Kim 《Journal of Exercise Nutrition & Biochemistry》2014,18(2):205-214
[Purpose]
The purpose of this study was to exam the association of body composition, flexibility, and injury risk to genetic polymorphisms including ACE ID, ACTN3 RX, and COL5A1 polymorphisms in ballet dancers in Korea.[Methods]
For the purpose of this study, elite ballerinas (n = 97) and normal female adults (n = 203) aged 18 to 39 were recruited and these participants were tested for body weight, height, body fat, fat free mass, flexibility, injury risks on the joints and gene polymorphisms (ACE, ACTN3, COL5A1 polymorphism).[Results]
As results, the ACE DD genotype in ballerinas was associated with higher body fat and percentage of body fat than the ACE II and ID genotypes (p < 0.05). In the study on the ACTN3 polymorphism and ballerinas, the XX genotype in ballerinas had lower body weight and lower fat-free mass than the RR and RX genotype (p < 0.005). Also, the means of sit and reach test for flexibility was lower in the ACTN3 XX genotype of ballerinas than the RR and RX genotype of ballerinas (p < 0.05). Among the sports injuries, the ankle injury of the XX-genotyped ballerinas was in significantly more prevalence than the RR and XX-genotyped ballerinas (p < 0.05). According to the odd ratio analysis, XX-genotyped ballerinas have the injury risk on the ankle about 4.7 (95% CI: 1.6~13.4, p < 0.05) times more than the RR and RX-genotyped ballerinas. Meanwhile, the COL5A1 polymorphism in ballerinas has no association with any factors including flexibility and injury risks.[Conclusion]
In conclusion, ACE polymorphism and ACTN3 polymorphism were associated with ballerinas'' performance capacity; COL5A1 was not associated with any factors of performance of Ballerinas. The results suggested that the ACE DD genotype is associated with high body fat, the ACTN3 XX genotype is associated with low fat-free mass, low flexibility, and higher risk of ankle-joint injury. 相似文献20.
Florent Ailloud Tiffany Lowe Gilles Cellier David Roche Caitilyn Allen Philippe Prior 《BMC genomics》2015,16(1)