首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

DDR1 is a receptor tyrosine kinases for collagen and an adverse prognostic factor in primary and metastatic tumors.Despite this, DDR1 signaling and its functional consequences in tumor development remain unclear. RT-PCR and Western blot show that A375, colon carcinoma HT29 and liver carcinoma SK-HEP human cell lines express functional DDR1 that phosphorylates in response to collagen type I. Chemical inhibition of DDR1 phosphorylation or DDR1 mRNA silencing reduced AKT and ERK phosphorylation, expression of ICAM1 and VCAM1, Ki67 and secretion of MMP9. DDR1 silenced cells showed reduced adhesion to collagen type I, MMP-dependent invasion, and chemotactic and proliferative responses to collagen type I. Our work indicates an essential role for DDR1 signaling in key prometastatic features of collagen type I in human carcinoma cells.  相似文献   

2.
《Translational oncology》2021,14(11):101208
Fibroblast growth factors 9 (FGF9) modulates cell proliferation, differentiation and motility for development and repair in normal cells. Abnormal activation of FGF9 signaling is associated with tumor progression in many cancers. Also, FGF9 may be an unfavorable prognostic indicator for non-small cell lung cancer patients. However, the effects and mechanisms of FGF9 in lung cancer remain elusive. In this study, we investigated the FGF9-induced effects and signal activation profiles in mouse Lewis lung carcinoma (LLC) in vitro and in vivo. Our results demonstrated that FGF9 significantly induced cell proliferation and epithelial-to-mesenchymal transition (EMT) phenomena (migration and invasion) in LLC cells. Mechanism-wise, FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13), and reduced the expression of E-cadherin. Moreover, in the allograft mouse model, intratumor injection of FGF9 to LLC-tumor bearing C57BL/6 mice enhanced LLC tumor growth which were the results of increased Ki67 expression and decreased cleaved caspase-3 expression compared to control groups. Furthermore, we have a novel finding that FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. In conclusion, FGF9 activated FAK, AKT, and ERK signaling through FGFR1 with induction of EMT to stimulate LLC tumorigenesis and hepatic metastasis. This novel FGF9/LLC allograft animal model may therefore be useful to study the mechanism of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.  相似文献   

3.
《Phytomedicine》2014,21(12):1717-1724
BackgroundThe lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75.AimsTo test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated.Materials and methodsPure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)® assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software.ResultsTreatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells.ConclusionResults suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.  相似文献   

4.
BackgroundPolychlorinated biphenyl-mediated steatohepatitis has been shown to be due in part to inhibition of epidermal growth factor receptor (EGFR) signalling. EGFR signalling regulates many facets of hepatocyte function, but it is unclear which other kinases and pathways are involved in the development of toxicant-associated steatohepatitis (TASH).MethodsComparative hepatic phosphoproteomic analysis was used to identify which kinases were affected by either PCB exposure (Aroclor 1260 mixture), high fat diet (HFD), or their interaction in a chronic exposure model of TASH. Cellular assays and western blot analysis were used to validate the phosphoproteomic findings.Results1760 unique phosphorylated peptides were identified and of those 588 were significantly different. PCB exposure and dietary interaction promoted a near 25% reduction of hepatic phospho-peptides. Leptin and insulin signalling were pathways highly affected by PCB exposure and liver necrosis was a pathologic ontology over represented due to interaction between PCBs and a HFD. Casein kinase 2 (CK2), Extracellular regulated kinase (ERK), Protein kinase B (AKT), and Cyclin dependent kinase (CDK) activity were demonstrated to be downregulated after PCB exposure and this downregulation was exacerbated with a HFD. PCB exposure led to a loss of hepatic CK2 subunit expression limiting CK2 kinase activity and negatively regulating caspase-3 (CASP3). PCBs promoted secondary necrosis in vitro validating the latter observation. The loss of hepatic phosphoprotein signalling appeared to be due to decreased signal transduction rather than phosphatase upregulation.ConclusionsPCBs are signal disrupting chemicals that promote secondary necrosis through affecting a myriad of liver processes including metabolism and cellular maintenance. PCB exposure, particularly with interaction with a HFD greatly down-regulates the hepatic kinome. More data are needed on signalling disruption and its impact on liver health.  相似文献   

5.
目的:研究翻译控制肿瘤蛋白(TCTP)在肝癌细胞增殖过程中的作用及相关机制。方法:通过western blot技术检测14对肝癌与癌旁组织中TCTP的蛋白表达水平。通过siRNA(small interference RNA)技术在肝癌细胞系SMMC-7721和BEL-7404中下调TCTP的表达,然后通过CCK-8实验、克隆形成实验和EdU实验观察下调TCTP对肝癌细胞增殖的影响。通过western blot技术分析TCTP促进肝癌发生这一过程中可能涉及的分子通路。结果:相比于对应的癌旁组织,TCTP在肝癌组织中显著高表达。用siRNA技术下调TCTP水平后能够明显抑制肝癌细胞的增殖能力。下调TCTP的表达之后,AKT和ERK蛋白的磷酸化水平也随之降低。结论:TCTP在肝癌组织中显著高表达,并且在肝癌细胞的增殖过程中发挥着极其重要作用,其作用机制可能与AKT和ERK通路的磷酸化激活有关。  相似文献   

6.
Wang  Hao  Qu  Fangfei  Xin  Ting  Sun  Wei  He  Huimin  Du  Lijun 《Neurochemical research》2021,46(6):1400-1409

The proliferation and differentiation of Schwann cells are critical for the remyelination of injured peripheral nerve. Ginsenoside compound K (CK) is a metabolite produced from ginsenoside Rb1 which has strong anti-inflammatory effects. However, the potential effects of CK on Schwann cells have not been studied systematically before. Therefore, this study was aimed to explore the functions of CK in Schwann cell proliferation, migration and differentiation and its potential regulatory mechanism. Primary Schwann cells and RSC96 cells were treated with or without CK at different doses. The proliferation and migration of primary Schwann cells and RSC96 cells were examined by Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. The mRNA expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) was tested by quantitative real-time polymerase chain reaction (qRT-PCR). The levels of all proteins were examined by Western blot. CK could promote cell proliferation, migration and induce MAG and MBP expression in primary Schwann cells and RSC96 cells. Furthermore, CK activated MEK/ERK1/2 and PI3K/AKT pathways, and the beneficial effects of CK on primary Schwann cells and RSC96 cells were distinctly suppressed by inhibitor PD98059 or LY294002. Ginsenoside compound K induced cell proliferation, migration and differentiation via the activation of MEK/ERK1/2 and PI3K/AKT pathways in cultured primary Schwann cells and RSC96 cells.

  相似文献   

7.

Background

Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored.

Methodology/Principal Findings

Using a normal human urothelial (NHU) cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and Phosphatidylinositol 3-Kinase (PI3-K)/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of β-catenin-TCF signalling.

Conclusions/Significance

Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation.  相似文献   

8.
9.
BackgroundAdvanced cancer induces fundamental cardiac changes and promotes body wasting and heart failure. We evaluated the impact of cancer on major cardiac signalling pathways, and resulting consequences for the heart.Methods and resultsMetastatic melanoma disease was induced in male C57BL/6 N mice by intraperitoneal injection of the melanoma cell line B16F10 and lead to cardiac atrophy and heart failure. Analyses of key cardiac signalling pathways in left ventricular tissue revealed increased activation of STAT3 and reduced activation of AKT, p38 and ERK1/2. Markers of the ubiquitin proteasomal system (UPS: Atrogin-1) and of mitophagy/autophagy (LC3b, BNIP3) were upregulated. Tumour-bearing C57BL/6 N mice with a cardiomyocyte-specific overexpression of a constitutively active AKT transgene (AKTtg) displayed less cardiac atrophy and dysfunction and normalized Atrogin-1, LC3b and BNIP3 expression while the cardiomyocyte-specific knockout of STAT3 (CKO) had no major effect on these parameters compared to WT.ConclusionCancer alters major cardiac signalling pathways and subsequently the UPS, mitophagy and autophagy. The present study suggests that cancer-induced reduction of cardiomyocyte AKT contributes to these alterations as they were attenuated in tumour-bearing AKTtg mice. In turn, increased cardiomyocyte STAT3 activation appears less relevant, as tumour-induced impairment on the heart was largely similar in CKO and WT mice. Since oncologic therapies frequently target AKT and/or STAT3, their impact on the heart might be different in tumour-bearing mice compared to healthy mice, a feature suggesting to test tumour therapies also in tumour disease models and not only under healthy conditions. This article is part of a Special Issue entitled: Cardiomyocyte biology: new pathways of differentiation and regeneration edited by Marijke Brink, Marcus C. Schaub, and Christian Zuppinger.  相似文献   

10.
11.
摘要 目的:探讨兔VX2肺外周肿瘤超声造影特征与CD31和CD34微血管密度的相关性研究。方法:15只雌性新西兰白兔进行VX2 肺肿瘤模型,总共有30个VX2 癌植入15只兔子的肺中。通过高倍镜分析不同期VX2肿瘤的MVD。通过双重免疫荧光化学染色分析不同生长期VX2肿瘤Ki67和CD31阳性表达。分析肿瘤形态学组织病理学结果与微血管分布和CEUS结果之间的相关性。结果:随着生长周期的进展,VX2肿瘤的MVD增大(P<0.05)。随着生长周期的进展,VX2肿瘤内Ki67和CD31的阳性表达率增加(P<0.05)。CEUS显示VX2 肿瘤在早期动脉期有明显的外周增强和短暂的内部增强。肺外周VX2 肿瘤中 PI和CD31 MVD值之间呈显著正相关性(r=0.734,P<0.05)。CD31 MVD和CD34 MVD之间呈负相关(r=-0.691,P<0.05)。PI和CD34 MVD值之间不存在显著相关性(r=-0.412,P>0.05)。结论:与CD34 MVD 相比,CD31 MVD 可以更有效地评估肿瘤血管生成。CEUS作为一种无创成像方法,可以有效评估兔周围型肺癌的肿瘤血管生成情况。  相似文献   

12.
Xu  Hongxin  Cui  Ying  Liu  Xianwei  Zheng  Xiao  Liu  Jiaqing  Hu  Xinxin  Gao  Fuhua  Hu  Xiaoyan  Li  Mei  Wei  Xiaoqing  Gao  Ying  Zhao  Ying 《Molecular biology reports》2022,49(3):1871-1882
Background

MicroRNA-1290 (miR-1290) has been reported to be involved in many diseases and play a key role during the development process. However, the role of miR-1290 in atherosclerosis (AS) is still unclear.

Methods and results

The current study showed that the expressions of miR-1290 were high in serum of patients with hyperlipidemia. The functional role of miR-1290 were then investigated in human umbilical vein endothelial cells (HUVECs). Here, we found that miR-1290 expressions were notably enhanced in HUVECs mediated by IL-8. miR-1290 inhibitor repressed monocytic THP-1 cells adhesion to HUVECs by regulating ICAM-1 and VCAM-1, inhibited proliferation through regulating cyclinD1 and PCNA, and inhibited inflammatory response by regulating IL-1β. Mechanistically, we verified that miR-1290 mimic was able to directly target the 3′-UTR of GSK-3β mRNA using luciferase reporter assay. Knockdown of GSK-3β (si-GSK-3β) promoted HUVECs adhesion and the expression of IL-1β, and partially restore the depression effect of miR-1290 inhibitor on HUVECs adhesion and inflammation. In contrast, si-GSK-3β inhibited the proliferation of HUVECs and the expression of cyclinD1 and PCNA.

Conclusions

In summary, our study revealed that miR-1290 promotes IL-8-mediated the adhesion of HUVECs by targeting GSK-3β. However, GSK-3β is not the target protein for miR-1290 to regulate the proliferation of HUVECs. Our findings may provide potential target in atherosclerosis treatment.

  相似文献   

13.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   

14.
15.
目的:探讨人类泛素结合酶E2T(Ubiquitin-conjugating enzyme E2T,UBE2T)基因对结肠细胞增殖和凋亡的影响。方法:体外培养人正常结直肠粘膜细胞FHC,采用将UBE2T基因慢病毒质粒转染至FHC细胞48 h后,通过MTT法检测细胞增殖情况,western blotting检测细胞中增殖相关蛋白UBE2T蛋白、Ki67、促凋亡蛋白Bax和抗凋亡蛋白Bcl-2的表达,流式细胞术检测细胞凋亡率。结果:与转染空质粒的FHC细胞相比,UBE2T基因慢病毒质粒转染FHC细胞48 h后,细胞增殖能力显著上调(P0.05),UBE2T蛋白明显增加,Ki67的表达明显增加(P0.05),细胞凋亡率显著降低(P0.05),且Bax的表达明显下调而Bcl-2的表达上调(P0.05)。结论:UBE2T基因能够促进正常结肠粘膜细胞的增殖,并抑制其凋亡。  相似文献   

16.
Zhang  Jiajia  Wang  Lei  Liu  Yiying  Liu  Wei  Ma  Zhenling 《Molecular biology reports》2022,49(5):3765-3772
Objective

Interleukin-1 beta (IL-1β) is a crucial cytokine that has been implicated in cancer and metastasis development. However, its possible mechanistic role in cervical cancer remains unclear. This study aimed to investigate the functions of exogenous IL-1β in cervical cancer cell proliferation and migration.

Methods

HeLa cell proliferation and migration were measured using MTT and Transwell assays. A lentivirus-mediated packaging system was used to construct an IL-1β overexpressing cell line. MEK/ERK signal transduction was inhibited by pretreatment with the MEK inhibitor PD98059. qRT–PCR and Western blotting were used to test the expression of relevant genes.

Results

Exogenous IL-1β promoted the proliferation and migration of HeLa cells. In addition, overexpression of IL-1β in HeLa cells promoted cell proliferation. Mechanistically, exogenous IL-1β increased the phosphorylated MEK and ERK levels in HeLa cells and the expression of JUN, RELB, and NF-κB2. Alternatively, blockade of MEK inhibited the promoting proliferation effects of IL-1β and the expression of JUN, RELB, and NF-κB2.

Conclusions

Our data suggest that exogenous IL-1β regulates HeLa cell functions by regulating the MEK/ERK signaling pathway and by targeting JUN, RELB, and NF-κB2. Our study uncovered a potential association across IL-1β, cervical tumor development, and cancer progression.

  相似文献   

17.
Liver fibrosis is a primary threat to public health, owing to limited therapeutic options. Germacrone (GM) has been shown to exert various curative effects against human diseases, including liver injury. The aim of this study was to investigate the pharmacological effects of GM in the pathophysiology of hepatic fibrosis and determine its potential mechanisms of action. A liver fibrosis rat model was established via carbon tetrachloride (CCl4) treatment, and LX-2 cells were stimulated with TGF-β1. The effects of GM on liver fibrosis and its relationship with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway were investigated. In the CCl4 fibrosis-induced rat model, GM improved histological damage, inhibited the activity of hepatic α-smooth muscle actin and improved serum alanine aminotransferase and aspartate aminotransferase levels in a dose-dependent manner. GM potently inhibited hepatic stellate cells (HSCs) growth and epithelial–mesenchymal transition (EMT) progression, as reflected by the altered expression of proliferative (Ki-67, PCNA and cleaved caspase-3) and EMT-related (E-cadherin and vimentin) proteins. In TGF-β1-stimulated LX-2 cells, GM significantly inhibited the survival and activation of HSCs and induced cell apoptosis. GM also suppressed the migration ability and reversed the EMT process in HSCs. Following GM treatment, the phosphorylation of the PI3K, AKT and mTOR proteins was reduced in the liver of CCl4-treated rats and TGF-β1-stimulated LX-2 cells, indicating that GM may attenuate hepatic fibrosis via the PI3K/AKT/mTOR signalling pathway. These outcomes highlight the anti-fibrotic effects of GM and suggest that it is a potential therapeutic agent for the treatment of liver fibrosis.  相似文献   

18.
BackgroundThe in-vitro study indicated that ERK/MAPK and PI3K/AKT signal channels may play an important role in reparative regeneration process after peripheral nerve injury. But, relevant in-vivo study was infrequent. In particular, there has been no report on simultaneous activation of ERK/MAPK and PI3K/AKT signal channels in facial nerve cell and axon after facial nerve injury.ResultsThe expression of P-ERK enhanced in nerve cells at the injury side on the 1 d after the rat facial nerve was cut and kept on a higher level until 14 d, but decreased on 28 d. The expression of P-AKT enhanced in nerve cells at the injury side on 1 d after injury, and kept on a higher level until 28 d. The expression of P-ERK enhanced at the near and far sections of the injured axon on 1 d, then increased gradually and reached the maximum on 7 d, but decreased on 14 d, until down to the level before the injury on 28 d. The expression of P-AKT obviously enhanced in the injured axon on 1 d, especially in the axon of the rear section, but decreased in the axon of the rear section on 7 d, while the expression of axon in the far section increased to the maximum and kept on till 14 d. On 28 d, the expression of P-AKT decreased in both rear and far sections of the axon.ConclusionThe facial nerve simultaneously activated ERK/MAPK and PI3K/AKT signal channels in facial nerve cells and axons after the cut injury, but the expression levels of P-ERK and P-AKT varied as the function of the time. In particular, they were quite different in axon of the far section. It has been speculated that two signal channels might have different functions after nerve injury. However, their specific regulating effects should still be testified by further studies in regenerative process of peripheral nerve injury.  相似文献   

19.
20.
Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号