首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
血管内皮生长因子家族及其受体与肿瘤血管生成研究进展   总被引:7,自引:0,他引:7  
陈珊  金伟  闵平  陆核 《生命科学》2004,16(1):19-23
血管内皮生长因子(vascular endothelial growth factor,VEGF),又名血管通透性因子(vascular permeability factor,VPF)是重要的血管生成正性调节因子,是目前抗癌治疗的研究靶点之一。现已发现的VEGF家族成员包括VEGF—A、VEGF—B、VEGF—C、VEGF—D、VEGF—E和胎盘生长因子(placenta growth factor,PLGF)。VEGF的受体有VEGFR—1(fit—1)、VEGFR-2(flk-1/KDR)、VEGFR-3(fit-4)、neuropilin(NPR1/NPR2)。该家族的成员可以选择性地增强血管和/或淋巴管内皮细胞的有丝分裂,刺激内皮细胞增殖并促进血管生成,提高血管特别是微小血管的通透性,使血浆大分子外渗沉积在血管外的基质中,促进新生毛细血管网的建立,为肿瘤细胞的生长提供营养等。作者对VEGF家族成员及其受体的理化特征、VEGF与肿瘤的关系、VEGF抑制剂的研制作一综述。  相似文献   

2.
3.
Isocyanate chemicals, including toluene diisocyanate (TDI), are currently the most common causes of occupational asthma. Although considerable controversy remains regarding its pathogenesis, TDI-induced asthma is characterized by hyperresponsiveness and inflammation of the airways. One of the histological hallmarks of inflammation is angiogenesis, but the possible role of vascular endothelial growth factor (VEGF), a potent angiogenic cytokine, in TDI-induced asthma is unknown. We developed a murine model to investigate TDI-induced asthma by performing two courses of sensitization with 3% TDI and one challenge with 1% TDI using ultrasonic nebulization to examine the potential involvement of VEGF in that disease. These mice develop the following typical pathophysiological features: airway hyperresponsiveness, airway inflammation, and increased VEGF levels in the airway. Administration of VEGFR inhibitors reduced all these pathophysiological symptoms. These results suggest that VEGF is one of the major determinants of TDI-induced asthma and that the inhibition of VEGF may be a good therapeutic strategy.  相似文献   

4.
Vascular permeability is a hallmark response to the main angiogenic factor VEGF-A and we have previously described a reduction of this response in Shb knockout mice. To characterize the molecular mechanisms responsible for this effect, endothelial cells were isolated from lungs and analyzed in vitro. Shb deficient endothelial cells exhibited less migration in a scratch wound-healing assay both under basal conditions and after vascular endothelial growth factor-A (VEGF-A) stimulation, suggesting a functional impairment of these cells in vitro. Staining for VE-cadherin and vascular endothelial growth factor receptor-2 (VEGFR-2) showed co-localization in adherens junctions and in intracellular sites such as the perinuclear region in wild-type and Shb knockout cells. VEGF-A decreased the VE-cadherin/VEGFR-2 co-localization in membrane structures resembling adherens junctions in wild-type cells whereas no such response was noted in the Shb knockout cells. VE-cadherin/VEGFR-2 co-localization was also recorded using spinning-disk confocal microscopy and VEGF-A caused a reduced association in the wild-type cells whereas the opposite pattern was observed in the Shb knockout cells. The latter expressed slightly more of cell surface VEGFR-2. VEGF-A stimulated extracellular-signal regulated kinase, Akt and Rac1 activities in the wild-type cells whereas no such responses were noted in the knockout cells. We conclude that aberrant signaling characteristics with respect to ERK, Akt and Rac1 are likely explanations for the observed altered pattern of VE-cadherin/VEGFR-2 association. The latter is important for understanding the reduced in vivo vascular permeability response in Shb knockout mice, a phenomenon that has patho-physiological relevance.  相似文献   

5.
6.
Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross‐talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co‐culture between osteoblastic and endothelial cells. Through a well defined direct contact co‐culture model between human osteoprogenitors (HOPs) and human umbilical vein endothelial cells (HUVECs), we observed that HUVECs were able to migrate along HOPs, inducing the formation of specific tubular‐like structures. VEGF165 gene expression was detected in the HOPs, was up‐regulated in the co‐cultured HOPs and both Flt‐1 and KDR gene expression increased in co‐cultured HUVECs. However, the cell rearrangement observed in co‐culture was promoted by a combination of soluble chemoattractive factors and not by VEGF165 alone. Despite having no observable effect on endothelial cell tubular‐like formation, VEGF appeared to have a crucial role in osteoblastic differentiation since the inhibition of its receptors reduced the co‐culture‐stimulated osteoblastic phenotype. This co‐culture system appears to enhance both primary angiogenesis events and osteoblastic differentiation, thus allowing for the development of new strategies in vascularized bone tissue engineering. J. Cell. Biochem. 106: 390–398, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Bovine ectopic testis tissue grafting is a technique that can be used to study bovine spermatogenesis and for the production of germ cells for a variety of applications. Approximately 10% of seminiferous tubule cross sections in testis grafts contain spermatids, providing a unique tool to investigate what regulates germ cell differentiation. We hypothesized that manipulation of testis tissue grafts would increase the percentage of seminiferous tubule cross sections undergoing complete germ cell differentiation. To test this hypothesis, bovine testis tissue was treated with vascular endothelial growth factor (VEGF) at the time of grafting or explant cultured for 1 wk prior to grafting. For the VEGF experiment, 8-wk donor tissue and graft sites were treated with 1 microg of VEGF in order to increase angiogenesis at the graft site. For the testis tissue culture experiment, 4-wk-old donor testis was cultured for 1 wk prior to grafting to stimulate spermatogonial stem cell proliferation. Testis tissue grafts were removed from the mice 24 wk after grafting. VEGF treatment increased graft weight and the percentage of seminiferous tubule cross sections with elongating spermatids at the time of graft removal. Cultured testis tissue grafts were smaller and had fewer seminiferous tubules per graft. However, there was no difference in the percentage of seminiferous tubule cross sections that contained any germ cell type between groups. These data indicate for the first time that bovine testis tissue can be manipulated to better support germ cell differentiation in grafted tissue.  相似文献   

8.
重组血管内皮细胞生长因子包涵体复性条件研究   总被引:4,自引:0,他引:4  
利用大肠杆菌BL21(DE3) 表达血管内皮细胞生长因子165( VEGF165) ,表达蛋白以包涵体形式存在。为了获得大量有生物活性的蛋白质,我们对影响复性的参数:氧化型、还原型谷胱甘肽比例,复性液的pH 值,复性时间,精氨酸浓度以及血管内皮细胞生长因子( VEGF165) 包涵体的起始浓度进行了较为系统的研究,初步获得了具有一定生物活性的VEGF165 二聚体蛋白。  相似文献   

9.
10.
11.
Granulated metrial gland (GMG) cells are a characteristic uterine component belonging to a natural killer cell lineage. This study is aimed at revealing their kinetic and spatial relationship with vascular growth during pregnancy and the expression of vascular endothelial growth factor (VEGF). GMG cells and blood vessels were identified by periodic-acid-Schiff-reagent (PAS)-stained granules and positive staining for factor-VIII-related antigen, respectively. GMG cells were widely distributed in the decidua and metrial gland and showed a numerical increase with a peak at day 13 in parallel with the increase of vascular density. Preceding the maximal vascular development at day 13, microvessels with a narrow lumen representative of neovascularization prevailed at days 7-9, and the VEGF content in the decidua/metrial gland was significantly elevated at days 7-13 concurrently with mRNA expression. By immunolight microscopy combined with PAS staining, GMG cells with PAS-stained granules were positive for VEGF. Immunoelectron microscopy demonstrated that immunoreactions were diffuse in the cytoplasm but not localized in the granules. In contrast, fibroblast-like stromal cells were negative. These data indicate that GMG cells express VEGF and may play inducing roles in uterine neovascularization during pregnancy.  相似文献   

12.
利用大肠杆菌 BL2 1 (DE3)表达血管内皮细胞生长因子 (VEGF16 5)表达蛋白以包含体形式存在。为了获得有生物活性的蛋白质 ,我们对影响复性的参数 :氧化型、还原型谷胱甘肽比例 ,复性液的 p H值 ,复性时间 ,精氨酸浓度 ,血管内皮细胞生长因子起始浓度进行了较为系统的研究 ,初步获得了具有一定生物活性的 VEGF16 5二聚体蛋白。  相似文献   

13.
In the female reproductive system, as in a few adult tissues, angiogenesis occurs as a normal process and is essential for normal tissue growth and development. In the ovary, new blood vessel formation facilitates oxygen, nutrients, and hormone substrate delivery, and also secures transfer of different hormones to targeted cells. Ovarian follicle and the corpus luteum (CL) have been shown to produce several angiogenic factors, however, vascular endothelial growth factor (VEGF) is thought to play a paramount role in the regulation of normal and abnormal angiogenesis in the ovary. Expression of VEGF in ovarian follicles depends on follicular size. Inhibition of VEGF expression results in decreased follicle angiogenesis and the lack of the development of mature antral follicles. The permeabilizing activity of VEGF is thought to be involved in follicle antrum formation and in the ovulatory process. In the CL, VEGF expression corresponds to different patterns of angiogenesis during its lifespan. In most the species, higher VEGF expression in the early luteal phase is essential for the development of a high-density capillary network in the CL. However, high VEGF expression may be still maintained in the mid-luteal phase to increase vascular permeability that results in enhancement of luteal function. During gestation, VEGF is thought to be important for the persistence of the CL function for a longer than in the nonfertile cycle period of time. Further elucidation of specific roles of VEGF in ovarian physiology may help to understand the phenomenon of luteal insufficiency and reveal novel strategies of ovarian angiogenesis manipulation to alleviate infertility or to control fertility.  相似文献   

14.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by activating VEGF receptor-2 (VEGFR-2). The role of its homolog, placental growth factor (PlGF), remains unknown. Both VEGF and PlGF bind to VEGF receptor-1 (VEGFR-1), but it is unknown whether VEGFR-1, which exists as a soluble or a membrane-bound type, is an inert decoy or a signaling receptor for PlGF during angiogenesis. Here, we report that embryonic angiogenesis in mice was not affected by deficiency of PlGF (Pgf-/-). VEGF-B, another ligand of VEGFR-1, did not rescue development in Pgf-/- mice. However, loss of PlGF impaired angiogenesis, plasma extravasation and collateral growth during ischemia, inflammation, wound healing and cancer. Transplantation of wild-type bone marrow rescued the impaired angiogenesis and collateral growth in Pgf-/- mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow-derived cells. The synergism between PlGF and VEGF was specific, as PlGF deficiency impaired the response to VEGF, but not to bFGF or histamine. VEGFR-1 was activated by PlGF, given that anti-VEGFR-1 antibodies and a Src-kinase inhibitor blocked the endothelial response to PlGF or VEGF/PlGF. By upregulating PlGF and the signaling subtype of VEGFR-1, endothelial cells amplify their responsiveness to VEGF during the 'angiogenic switch' in many pathological disorders.  相似文献   

15.
OBJECTIVE: To investigate expression patterns and relationship of vascular endothelial growth factor (VEGF), vascular endothelial receptor-3 (VEGF-R3) (FLT-4) and cyclooxygenase-2 (COX-2) in psoriasis. STUDY DESIGN: Forty-three patients were included in this study. The clinical severity of psoriasis was assessed using the psoriasis area and severity index (PASI). Punch biopsy samples both from psoriatic and nonlesional skin were taken and VEGF, VEGF-R3 and COX-2 expressions determined. RESULTS: VEGF, VEGF-R3 and COX-2 expressions were detected in 90.9%, 78.0% and 86.4% of psoriatic and 84.1%, 71.8%, and 84.1% of nonlesional skin, respectively. Epidermal VEGF, VEGF-R3 and COX-2 expressions were detected in 56.8%, 77.8% and 34.1 of psoriatic and 75%, 78.1% and 65.9% of nonlesional skin, respectively. In dermis, VEGF, VEGF-R3 and COX-2 expression was observed in 88.6%, 77.5% and 84.1% of psoriatic and 81.8%, 64.1% and 77.3% of nonlesional skin, respectively. Among the PASI subgroups no statistically significant differences were detected for VEGF, VEGF-R3 and COX-2 expression. CONCLUSION: Our study demonstrated that VEGF, VEGF-R3 and COX-2 expression in psoriatic and nonlesional skin is significantly high in epidermis and dermis. Although there was significant concordance between VEGF and VEGF-R3 expressions in psoriatic lesions, there seems to be no concordance between the others.  相似文献   

16.
Angiogenesis has an essential role in many important pathological and physiological settings. It has been shown that vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), a potent cytokine expressed by most malignant tumors, has critical roles in vasculogenesis and both physiological and pathological angiogenesis. We report here that at non-toxic levels, the neurotransmitter dopamine strongly and selectively inhibited the vascular permeabilizing and angiogenic activities of VPF/VEGF. Dopamine acted through D2 dopamine receptors to induce endocytosis of VEGF receptor 2, which is critical for promoting angiogenesis, thereby preventing VPF/VEGF binding, receptor phosphorylation and subsequent signaling steps. The action of dopamine was specific for VPF/VEGF and did not affect other mediators of microvascular permeability or endothelial-cell proliferation or migration. These results reveal a new link between the nervous system and angiogenesis and indicate that dopamine and other D2 receptors, already in clinical use for other purposes, might have value in anti-angiogenesis therapy.  相似文献   

17.
18.

Background

Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium.

Methods

Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay.

Results

Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic.

Conclusions

VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.  相似文献   

19.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor or vasculotropin, is a recently characterized endothelial-specific mitogen which is angiogenic in vivo. Here we demonstrate that VEGF is angiogenic in vitro: when added to microvascular endothelial cells grown on the surface of three-dimensional collagen gels, VEGF induces the cells to invade the underlying matrix and to form capillary-like tubules, with an optimal effect at approximately 2.2nM (100ng/ml). When compared to basic fibroblast growth factor (bFGF) at equimolar (0.5nM) concentrations, VEGF was about half as potent. The most striking effect was seen in combination with bFGF: when added simultaneously, VEGF and bFGF induced an in vitro angiogenic response which was far greater than additive, and which occurred with greater rapidity than the response to either cytokine alone. These results demonstrate that like bFGF, VEGF induces an angiogenic response via a direct effect on endothelial cells, and that by acting in concert, these two cytokines have a potent synergistic effect on the induction of angiogenesis in vitro. We suggest that the synergism between VEGF and bFGF plays an important role in the control of angiogenesis in vivo.  相似文献   

20.
The role of vascular endothelial growth factor in blood vessel formation   总被引:15,自引:0,他引:15  
Angiogenic growth factors and their endothelial receptors function as signalling molecules during vascular growth and development. Vascular endothelial growth factor (VEGF) and its receptors represent a key regulatory system of embryonic vascular development and of both physiological and pathological neovascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号