首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylation is a common posttranslational modification of proteins and lipids of the secretory pathway that generates binding sites for galactose-specific lectins or galectins. Branching of Asn-linked (N-)glycans by the N-acetylglucosaminyltransferases (Mgat genes) increases affinity for galectins. Both tissue-specific expression of the enzymes and the metabolic supply of sugar-nucleotides to the ER and Golgi regulate glycan distribution while protein sequences specify NXS/T site multiplicity, providing metabolic and genetic contributions to galectin-glycoprotein interactions. Galectins cross-link glycoproteins forming dynamic microdomains or lattices that regulate various mediators of cell adhesion, migration, proliferation, survival and differentiation. There are a similar number of galactose-specific galectins in C. elegans and humans, but expression of higher-affinity branched N-glycans are a more recent feature of vertebrate evolution. Galectins might be considered a reading code for repetition of the minimal units of binding [Gal(NAc)β1-3/4GlcNAc] and NXS/T site multiplicity in proteins. The rapidly evolving and structurally complex Golgi modifications to surface receptors are interpreted through affinity for the lattice, which regulates receptor levels as a function of the cellular environment, and thereby the probability of various cell fates. Many important questions remain concerning the regulation of the galectins, the glycan ligands and lattice interaction with other membrane domains and endocytic pathways.  相似文献   

2.
Galectins are β-galactoside-binding lectins that regulate diverse cell behaviors, including adhesion, migration, proliferation, and apoptosis. Galectins can be expressed both intracellularly and extracellularly, and extracellular galectins mediate their effects by associating with cell-surface oligosaccharides. Despite intensive current interest in galectins, strikingly few studies have focused on a key enzyme that acts to inhibit galectin signaling, namely β-galactoside α2,6-sialyltransferase (ST6Gal-I). ST6Gal-I adds an α2,6-linked sialic acid to the terminal galactose of N-linked glycans, and this modification blocks galectin binding to β-galactosides. This minireview summarizes the evidence suggesting that ST6Gal-I activity serves as an "off switch" for galectin function.  相似文献   

3.
BackgroundGalectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route.MethodsProducts of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator.ResultsDirecting galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1.ConclusionsFolding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation.General significanceAvailability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.  相似文献   

4.
Role of galectins in inflammatory and immunomodulatory processes   总被引:16,自引:0,他引:16  
Galectins are members of a highly conserved family of beta-galactoside-binding animal lectins. Presently, more than 14 members have been identified and additional homologues are likely to be discovered. Given their conservation throughout animal evolution, it is not surprising that they could play key roles in innate and adaptive immune responses, through sugar-dependent and -independent mechanisms. Recently, it has become increasingly clear that galectins can differentially affect cellular activation and function. These biological effects attracted attention of researchers in cell biology, biochemistry, glycobiology and immunology, not only in the mode of action of galectins, but also in their role as putative modulators of immune surveillance, apoptosis, cell adhesion and chemotaxis. Here we will summarize the state-of-the-art of the effects of galectins in inflammatory and immunomodulatory processes. In addition, we will discuss in-depth the current knowledge about the effects of this enigmatic family of animal lectins and their glycoligands in the progression, diagnosis and treatment of different pathological processes such as autoimmunity, allergy, infection and chronic inflammation.  相似文献   

5.
Galectins are a continuously expanding family of beta-galactoside-binding lectins present in a variety of evolutionarily divergent animal species. Here we report, for the first time, that expression of galectins extends to the reptilia lineage of lizards. Up to five lactose-binding proteins were isolated from the lizard Podarcis hispanica by affinity chromatography on asialofetuin-Sepharose. The main component, which is most abundantly expressed in skin, was purified from this tissue and further characterized. Under native conditions the protein behaved as a monomer with a molecular mass of 14,500 Da and an isoelectric point of 6.3. Based on sequence homology of the 58 N-terminal amino acid residues with galectins, and on its demonstrated galactoside-binding activity, this lectin we named LG-14 (from Lizard Galectin and 14 kDa) is classified as a new member of the galectin family. LG-14 falls into and strengthen the still thinly populated category of monomeric prototype galectins.  相似文献   

6.
Blackgram (Vigna mungo L. Hepper)seeds contain two galactose-specific lectins, BGL-I and BGL-II. BGL-I was partially purified into two monomeric lectins which were designated as BGL-I-1 (94 kDa) and BGL-I-2 (89 kDa). BGL-II is a monomeric lectin of 83 kDA. The purified lectins were associated with galactosidase activities. BGL-I-1 and BGL-II were copurified with α-galactosidase activity while BGL-I-2 was largely associated with β-galactosidase activity. These lectins agglutinate trypsin treated rabbit erythrocytes, but not the human erythrocytes of A, B or O groups. They were stable between pH 3·5 and 7·5 for their agglutination. The lectins did not show any metalion requirement. They were inactivated at 50°C. The lectin activity was inhibited by D-galactose (0·1 mM). The Scatchard plots of galactose binding to these lectins are nonlinear and biphasic curves indicative of multiple binding sites. The data show that the monomeric lectins have both lectin and galactosidase activities suggestive of a bifunctional protein.  相似文献   

7.
Monocytes and macrophages link the innate and adaptive immune systems and protect the host from the outside world. In inflammatory disorders their activation leads to tissue damage. Galectins have emerged as central regulators of the immune system. However, if they regulate monocyte/macrophage physiology is still unknown.Binding of Gal-1, Gal-2, Gal-3 and Gal-4 to monocytes/macrophages, activation, cytokine secretion and apoptosis were determined by FACS, migration by Transwell system and phagocytosis by phagotest. Supernatants from macrophages co-cultured with galectins revealed their influence on T-cell function.In our study Gal-1, Gal-2, Gal-4, and partly Gal-3 bound to monocytes/macrophages. Galectins prevented Salmonella-induced MHCII upregulation. Cytokine release was distinctly induced by different galectins. T-cell activation was significantly restricted by supernatants of macrophages co-cultured in the presence of Gal-2 or Gal-4. Furthermore, all galectins tested significantly inhibited monocyte migration. Finally, we showed for the first time that galectins induce potently monocyte, but not macrophage apoptosis.Our study provides evidence that galectins distinctively modulate central monocyte/macrophage function. By inhibiting T-cell function via macrophage priming, we show that galectins link the innate and adaptive immune systems and provide new insights into the action of sugar-binding proteins.  相似文献   

8.
Phosphorylation is known to have a strong impact on protein functions. We analyzed members of the lectin family of multifunctional galectins as targets of the protein kinases CK1, CK2, and PKA. Galectins are potent growth regulators able to bind both glycan and peptide motifs at intra- and extracellular sites. Performing in vitro kinase assays, galectin phosphorylation was detected by phosphoprotein staining and autoradiography. The insertion of phosphoryl groups varied to a large extent depending on the type of kinase applied and the respective galectin substrate. Sites of phosphorylation observed in the recombinant galectins were determined by a strategic combination of phosphopeptide enrichment and nano-ultra-performance liquid chromatography tandem mass spectrometry (nanoUPLC–MS/MS). By in silico modeling, phosphorylation sites were visualized three-dimensionally. Our results reveal galectin-type-specific Ser-/Thr-dependent phosphorylation beyond the known example of galectin-3. These data are the basis for functional studies and also illustrate the analytical sensitivity of the applied methods for further work on human lectins.  相似文献   

9.
Galectins are a family of proteins with overlapping but distinct carbohydrate-binding specificities. They differ in cell-type and tissue distribution, and have various functions. Extracellularly several galectins can modulate cellular adhesive interactions and signalling pathways, effects that may be important in the establishment and maintenance of tissue organization during normal development. This review will summarise recent progress in defining the roles of galectins that are expressed in the kidney in normal development, and discuss the evidence linking aberrant expression of galectins with kidney disease. Published in 2004.  相似文献   

10.
BackgroundSolving primary structure of lectins leads to an understanding of the physiological roles within an organism and its biotechnological potential. Only eight sponge lectins have had their primary structure fully determined.MethodsThe primary structure of CCL, Chondrilla caribensis lectin, was determined by tandem mass spectrometry. The three-dimensional structure was predicted and the protein-carbohydrate interaction analysed by molecular docking. Furthermore, the anti-leishmanial activity was observed by assays with Leishmania infantum.ResultsThe amino acid sequence consists of 142 amino acids with a calculated molecular mass of 15,443 Da. The lectin has a galectin-like domain architecture. As observed in other sponge galectins, the signature sequence of a highly conserved domain was also identified in CCL with some modifications. CCL exhibits a typical galectin structure consisting of a β-sandwich. Molecular docking showed that the amino acids interacting with CCL ligands at the monosaccharide binding site are mostly the same as those conserved in this family of lectins. Through its interaction with L. infantum glycans, CCL was able to inhibit the development of this parasite. CCL also induced apoptosis after eliciting ROS production and altering the membrane integrity of Leishmania infantum promastigote.ConclusionsCCL joins the restricted group of sponge lectins with determined primary structure and very high biotechnological potential owing to its promising results against pathogens that cause Leishmaniasis.General significanceAs the determination of primary structure is important for biological studies, now CCL can become a sponge galectin with an exciting future in the field of human health.  相似文献   

11.
In the present study, three typical monocot mannose-binding lectins (e.g., Polygonatum cyrtonema lectin [PCL], Ophiopogon japonicus lectin [OJL] and Liparis noversa lectin [LNL]), were reported to possess a similar tertiary structure with three mannose-binding sites and a close phylogenetic relationship. Subsequently, these lectins were found to bear remarkable inhibitory effects on the growth of MCF-7 cells. Further experiments confirmed that there is a link among the hemagglutinating activity, antiproliferative activity and mannose-binding activity. In addition, these lectins were shown to induce MCF-7 cell apoptosis and caspase was found to be involved in this apoptotic pathway. In conclusion, these findings demonstrate that the different antiproliferative effects may be due to the conserved motifs of mannose-binding sites. Furthermore, our results demonstrate that these lectins induce apoptosis in MCF-7 cells via a caspase-dependent pathway.  相似文献   

12.
Galectin-1 receptors in different cell types   总被引:8,自引:0,他引:8  
Summary Galectins are a family of animal lectins defined by two properties: shared amino acid sequences in their carbohydrate-recognizing domain, and -galactoside affinity. A wide variety of biological phenomena are related to galectins, i.e., development, differentiation, morphogenesis, tumor metastasis, apoptosis, RNA splicing, and immunoregulatory function. In this review, we will focus on galectin-1 receptors, and some of the mechanisms by which this lectin affects different cell types. Several galectin-1 receptors are discussed such as CD45, CD7, CD43, CD2, CD3, CD4, CD107, CEA, actin, extracellular matrix proteins such as laminin and fibronectin, glycosaminoglycans, integrins, a -lactosamine glycolipid, GM1 ganglioside, polypeptide HBGp82, glycoprotein 90 K/MAC-2BP, CA125 cancer antigen, and pre-B cell receptor.This revised version was published online in April 2005. In the previous version the name of the last author was missing.  相似文献   

13.
BackgroundRecognition of glycans by lectins is emerging as (patho)physiologically broadly used mode of cellular information transfer. Whereas the direct ligand-receptor contact is often already thoroughly characterized, the functional relevance of aspects of architecture such as modular design and valence of lectins is less well defined.Scope of reviewFollowing an introduction to modular lectin design, three levels of methodology are then reviewed that delineate lectin structure-activity relationships beyond glycan binding, with emphasis on domain shuffling.Major conclusionsEngineering of variants by modular transplantation facilitates versatile Nature-inspired design switches and access to new combinations with translational potential, as exemplified for human adhesion/growth-regulatory galectins.General significanceTo gain an understanding of the functional significance of natural variations in quaternary structure and modular design within a protein family is a current challenge. Strategic application of methods of the described phases is a means to respond to this challenge.  相似文献   

14.
The effects of lectins with different carbohydrate-binding specificities on human hepatoma (H3B), human choriocarcinoma (JAr), mouse melanoma (B16) and rat osteosarcoma (ROS) cell lines were investigated. Cell viability was estimated by uptake of crystal violet. Wheat germ lectin was the lectin with the most deleterious effect on the viability of H3B, JAr and ROS cell lines. The cytotoxicity of lectins with similar sugar-binding specificity to wheat germ lectin, including Maackia amurensis lectin and Solanum tuberosum lectin, was weaker than that of wheat germ lectin. N-acetylgalactosamine-and galactose-binding Tricholoma mongolicum lectin ranked third, after wheat germ lectin and Maackia amurensis lectin, with regard to its effect on H3B, and ranked, together with Maackia amurensis lectin, as the lectins with the second most pronounced effects on ROS. However, the cytotoxic effects of Tricholoma mongolicum lectin on JAr were much weaker than those of Maackia amurensis lectin, Solanum tuberosum lectin and Anguilla anguilla lectin. Artocarpus integrifolia lectin, Lens culinaris lectin and Anguilla anguilla lectin possessed milder cytotoxicity than the remaining lectins. which were approximately equipotent. The mannose-binding Narcissus pseudonarcissus and Lens culinaris lectins were only weakly cytotoxic, the exception being a stronger effect on H3B. The N-acetylgalactosamine-binding Glycine max lectin and methylgalactose-binding Artocarpus integrifolia lectin similarly exhibited low cytotoxicity. It can thus be concluded that in general the ranking was wheat germ lectin > Maackia amurensis lectin approximately Trichloma mongolicum lectins > other aforementioned lectins in cytotoxicity. A particular lectin may manifest more conspicuous toxicity on certain cell lines and less on others.  相似文献   

15.
Arabinogalactan-protein (AGP, "beta-lectin") was isolated from leek seeds, tested for specificity, conjugated with gold colloids, and used as a cytochemical probe to detect beta-linked bound sugars in ultrathin sections of wheat leaves infected with a compatible race of stem rust fungus. Similar sections were probed with other gold-labeled lectins to detect specific sugars. AGP-gold detected beta-glycosyl in all fungal walls and in the extrahaustorial matrix. Other lectin gold conjugates localized galactose in all fungal walls except in walls of the haustorial body. Limulus polyphemus lectin bound only to the outermost layer of intercellular hyphal walls of the fungus. Binding of these lectins was inhibited by their appropriate haptens and was diminished or abolished in specimens pretreated with protease, indicating that the target substances in the tissue were proteinaceous or that polysaccharides possessing affinity to the lectin probes had been removed by the enzyme from a proteinaceous matrix by passive escape. Binding of Lotus tetragonolobus lectin was limited to the two outermost fungal wall layers but was not hapten-inhibitable. Limax flavus lectin, specific for sialic acids, had no affinity to any structure in the sections. In the fungus, the most complex structure was the outermost wall layer of intercellular hyphal cells; it had affinity to all lectins tried so far, except to Limax flavus lectin and to wheat germ lectin included in an earlier study. In the host, AGP and the galactose-specific lectins bound to the inner domain of the wall in areas not in contact with the fungus. At host cell penetration sites, affinity to these lectins often extended throughout the host wall, confirming that it is modified at these sites. Pre-treatment with protease had no effect on lectin binding to the host wall. After protease treatment, host starch granules retained affinity to galactose-specific lectins, but lost affinity for AGP.  相似文献   

16.
Summary A two-step affinity technique is described for light microscopic demonstration of the Concanavalin A, Agaricus bisporus lectin and Ricinus communis lectin binding sites by means of various FITC-labeled human and rabbit serum protein fractions. Experiments for the visualization of the Lens culinaris lectin and the Pisum sativum lectin binding sites gaves negative results. The technique consist of two reaction steps which involve the incubation of tissue sections in the lectins followed by the visualization of receptor-bound lectins with FITC-labeled serum protein fractions basing on their carbohydrate content. The specificity of the technique could be demonstrated by the addition of the hapten or by incubation in the FITC-labeled serum protein fractions only. In contrast to the direct or indirect staining methods only very small amounts of purified lectins are necessary.  相似文献   

17.
Summary Arabinogalactan-protein (AGP, -lectin) was isolated from leek seeds, tested for specificity, conjugated with gold colloids, and used as a cytochemical probe to detect -linked bound sugars in ultrathin sections of wheat leaves infected with a compatible race of stem rust fungus. Similar sections were probed with other gold-labeled lectins to detect specific sugars. AGP-gold detected -glycosyl in all fungal walls and in the extrahaustorial matrix. Other lectin gold conjugates localized galactose in all fungal walls except in walls of the haustorial body. Limulus polyphemus lectin bound only to the outermost layer of intercellular hyphal walls of the fungus. Binding of these lectins was inhibited by their appropriate haptens and was diminished or abolished in specimens pretreated with protease, indicating that the target substances in the tissue were proteinaceous or that polysaccharides possessing affinity to the lectin probes had been removed by the enzyme from a proteinaceous matrix by passive escape. Bindig of Lotus tetragonolobus lectin was limited to the two outermost fungal wall layers but was not hapten-inhibitable. Limax flavus lectin, specific for sialic acids, had no affinity to any structure in the sections. In the fungus, the most complex structure was the outermost wall layer of intercellular hyphal cells; it had affinity to all lectins tried so far, except to Limax flavus lectin and to wheat germ lectin included in an earlier study. In the host, AGP and the galactose-specific lectins bound to the inner domain of the wall in areas not in contact with the fungus. At host cell penetration sites, affinity to these lectins often extended througout the host wall, confirming that it is modified at these sites. Pre-treatment with protease had no effect on lectin binding to the host wall. After protease treatment, host starch granules retained affinity to galactose-specific lectins, but lost affinity for AGP.This paper is listed as Contribution No. 1330, Agriculture Canada Research Station Winnipeg  相似文献   

18.
The effects of the lectins concanavalin A, WGA, ricin, abrin, and the mistletoe lectins from Viscum album MLI, MLII, and MLIII on the binding of ligands of the NMDA and sigma receptors in rat hippocampus synaptic plasma membranes were investigated. Binding of [3H]MK-801, [3H]glutamate, [3H]5,7-DCKA, and [3H]glycine to the membranes was decreased by 40-60% after addition of galactose-specific lectins (mistletoe lectins MLI, MLII, ricin, abrin) at concentrations of 0.01 mg/ml, but was not affected by the glucose- and mannose-specific lectin Con A, an acetylglucosamine-specific lectin WGA, or an acetylgalactosamine-specific lectin MLIII. The binding of [3H]SKF 10047 was decreased only in the presence of MLIII and did not change after addition of the other lectins. It is suggested that lectin-sensitive ligand binding sites of sigma- and NMDA receptors are located separately, and that the carbohydrate side chains of the sigma receptor do not participate in the modulation of the NMDA-receptor.  相似文献   

19.
The natural physiological ligands for selectins are oligosaccharides found in glycoprotein or glycolipid molecules in cell membranes. In order to study the role of sugar residues in the in vivo lectin anti-inflammatory effect, we tested three leguminous lectins with different carbohydrate binding affinities in the peritonitis and paw oedema models induced by carrageenin in rats. L. sericeus lectin was more anti-inflammatory than D. virgata lectin, the effects being reversed by their specific binding sugars (N-acetylglucosamine and alpha-methylmannoside, respectively). However, V. macrocarpa, a galactose-specific lectin, was not anti-inflammatory. The proposed anti-inflammatory activity of lectins could be due to a blockage of neutrophil-selectin carbohydrate ligands. Thus, according to the present data, we suggest an important role for N-acetylglucosamine residue as the major ligand for selectins on rat neutrophil membranes.  相似文献   

20.
Cell surface glycans present docking sites to endogenous lectins. With growing insight into the diversity of lectin families it becomes important to answer the question on the activity profiles of individual family members. Focusing on galectins (-galactoside-binding proteins without Ca2+-requirement sharing the jelly-roll-like folding pattern), this study was performed to assess the potency of proto-type galectins (galectins-1 and -7 and CG-16) and the chimera-type galectin-3 to elicit selected cell responses by carbohydrate-dependent surface binding and compare the results. The galectins, except for galectin-1, were found to enhance detergent (SDS)-induced hemolysis of human erythrocytes to different degrees. Their ability to confer increased membrane osmofragility thus differs. Aggregation of neutrophils, thymocytes and platelets was induced by the proto-type galectin-1 but not -7, by CG-16 and also galectin-3. Cell-type-specific quantitative differences and the importance of the fine-specificity of the galectin were clearly apparent. In order to detect cellular responses based on galectin binding and bridging of cells the formation of haptenic-sugar-resistant (HSR) intercellular contacts (an indicator of post-binding signaling) was monitored. It was elicited by CG-16 and galectin-1 but not galectin-3, revealing another level at which activities of individual galectins can differ. Acting as potent elicitor of neutrophil aggregation, CG-16-dependent post-binding effects were further analyzed. Carbohydrate-dependent binding to the neutrophils' surface led to a sustained increase of cytoplasmic Ca2+ concentration in a dose-dependent manner. The ability of CG-16 to activate H2O2 generation by human peripheral blood neutrophils was primed by the Ca2+-ionophor ionomycin and by cytochalasin B. In a general context, these results emphasize that – besides plant lectins as laboratory tools – animal lectins can trigger cell reaction cascades, implying potential in vivo relevance for the measured activities. Within the family of galectins, the activity profiles depend on the target cell type and the individual galectin. Notably, proto-type galectins do not necessarily share a uniform capacity as elicitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号