首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human Cathelicidin antimicrobial peptide LL-37 is known to have antiviral activity against many viruses. In the present study, we investigated the in-vitro effect of LL-37 on dengue virus type 2 (DENV-2) infection and replication in Vero E6 cells. To study the effect of pretreatment of virus or cells with LL-37, the virus was pretreated with different concentrations of LL-37 (2.5 μM–15 μM) or scrambled (Scr) LL-37(5 μM–15 μM) and used for infection or the cells were first treated with LL-37 and infected. To study the effect of LL-37 post infection (PI), the cells were infected first followed by addition of LL-37 to the culture medium 24 h after infection. In all conditions, after the incubation, the culture supernatant was assessed for viral RNA copy number by real time RT-PCR, infectious virus particles by focus forming unit assay (FFU) and non structural protein 1 (NS1) antigen levels by ELISA. Percentage of infection was assessed using immunoflourescence assay (IFA). The results revealed that pretreatment of virus with 10–15 μM LL-37 significantly reduced its infectivity as compared to virus control (P < 0.0001). Moreover, pretreatment of virus with 10–15 μM LL-37 significantly reduced the levels of viral genomic RNA and NS1 antigen (P < 0.0001). Treatment of virus with 10–15 μM LL-37 resulted in two to three log reduction of mean log10 FFU/ml as compared to virus control (P < 0.0001). Treatment of the virus with scrambled LL-37 had no effect on percentage of infection and viral load as compared to virus control cultures (P > 0.05). Pretreatment of cells before infection or addition of LL-37 to the culture 24 h PI had no effect on viral load. Molecular docking studies revealed possible binding of LL-37 to both the units of DENV envelope (E) protein dimer. Together, the in-vitro experiments and in-silico analyses suggest that LL-37 inhibits DENV-2 at the stage of entry into the cells by binding to the E protein. The results might have implications for prophylaxis against DENV infections and need further in-vivo studies.  相似文献   

2.
As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of (13)C,(15)N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional (1)H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and (15)N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.  相似文献   

3.
Antimicrobial peptides and their precursor molecules form a central part of human and mammalian innate immunity. The underlying genes have been thoroughly investigated and compared for a considerable number of species, allowing for phylogenetic characterization. On the phenotypical side, an ever-increasing number of very varied and distinctive influences of antimicrobial peptides on the innate immune system are reported. The basic biophysical understanding of mammalian antimicrobial peptides, however, is still very limited. This is especially unsatisfactory since knowledge of structural properties will greatly help in the understanding of their immunomodulatory functions. The focus of this review article will be on LL-37, the only cathelicidin-derived antimicrobial peptide found in humans. LL-37 is a 37-residue, amphipathic, helical peptide found throughout the body and has been shown to exhibit a broad spectrum of antimicrobial activity. It is expressed in epithelial cells of the testis, skin, the gastrointestinal tract, and the respiratory tract, and in leukocytes such as monocytes, neutrophils, T cells, NK cells, and B cells. It has been found to have additional defensive roles such as regulating the inflammatory response and chemo-attracting cells of the adaptive immune system to wound or infection sites, binding and neutralizing LPS, and promoting re-epthelialization and wound closure. The article aims to report the known biophysical facts, with an emphasis on structural evidence, and to set them into relation with insights gained on phylogenetically related antimicrobial peptides in other species. The multitude of immuno-functional roles is only outlined. We believe that this review will aid the future work on the biophysical, biochemical and immunological investigations of this highly intriguing molecule.  相似文献   

4.
Antimicrobial peptides and their precursor molecules form a central part of human and mammalian innate immunity. The underlying genes have been thoroughly investigated and compared for a considerable number of species, allowing for phylogenetic characterization. On the phenotypical side, an ever-increasing number of very varied and distinctive influences of antimicrobial peptides on the innate immune system are reported. The basic biophysical understanding of mammalian antimicrobial peptides, however, is still very limited. This is especially unsatisfactory since knowledge of structural properties will greatly help in the understanding of their immunomodulatory functions. The focus of this review article will be on LL-37, the only cathelicidin-derived antimicrobial peptide found in humans. LL-37 is a 37-residue, amphipathic, helical peptide found throughout the body and has been shown to exhibit a broad spectrum of antimicrobial activity. It is expressed in epithelial cells of the testis, skin, the gastrointestinal tract, and the respiratory tract, and in leukocytes such as monocytes, neutrophils, T cells, NK cells, and B cells. It has been found to have additional defensive roles such as regulating the inflammatory response and chemo-attracting cells of the adaptive immune system to wound or infection sites, binding and neutralizing LPS, and promoting re-epthelialization and wound closure. The article aims to report the known biophysical facts, with an emphasis on structural evidence, and to set them into relation with insights gained on phylogenetically related antimicrobial peptides in other species. The multitude of immuno-functional roles is only outlined. We believe that this review will aid the future work on the biophysical, biochemical and immunological investigations of this highly intriguing molecule.  相似文献   

5.
The human antimicrobial peptide LL-37 is a cationic peptide with antimicrobial activity against both Gram-positive and Gram-negative microorganisms. This work describes the development of an expression system based on Escherichia coli capable of high production of the recombinant LL-37. The fusion protein Trx-LL-37 was expressed under control of T7 promoter. The expression of T7 polymerase in the E. coli strain constructed in this work was controlled by regulation mechanisms of the arabinose promoter. The expression plasmid was stabilized by the presence of parB locus which ensured higher homology of the culture during cultivation without antibiotic selection pressure. This system was capable of producing up to 1 g of fusion protein per 1 l of culture. The subsequent semipreparative HPLC allowed us to isolate 40 mg of pure LL-37. LL-37 showed high antimicrobial activity against both Gram-negative and Gram-positive microorganisms. Its activity against Candida albicans was practically nonexistent. Minimal Inhibition Concentration (MIC) determined for E. coli was 1.65 μM; for Staphylococcus aureus 2.31 μM, and for Enterococcus faecalis 5.54 μM. The effects of cathelicidin on E. coli included the ability to permeabilize both cell membranes, as could be observed by the increase of β-galactosidase activity in extracellular space in time. Physiological changes were studied by scanning electron microscopy; Gram-positive microorganisms did not show any visible changes in cell shapes while the changes observed on E. coli cells were evident. The results of this work show that the herein designed expression system is capable of producing adequate quantities of active human antimicrobial peptide LL-37.  相似文献   

6.
The Slit family of guidance cues binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit-Robo signaling had been reported to function as chemoattractive signal for vascular endothelial cells during angiogenesis. In this study, we found that Robo1 was expressed in lymphatic endothelial cells to mediate the migration and tube formation of these cells upon Slit2 stimulation, which were specifically inhibited by the function-blocking antibody R5 to Slit2/Robo1 interaction. To further explore the lymphangiogenic effect and significance mediated by Slit-Robo signaling, we intercrossed Slit2 transgenic mice with a non-metastatic RIP1-Tag2 mouse tumor model, and found that transgenic overexpression of Slit2 significantly enhanced tumor lymphangiogenesis and subsequently promoted mesenteric lymph node metastasis of pancreatic islet tumors. Taken together, our findings reveal that through interacting with Robo1, Slit2 is a novel and potent lymphangiogenic factor and contributes to tumor lymphatic metastasis.  相似文献   

7.
8.
The mammalian target of rapamycin (mTOR) is a protein kinase that, when present in a complex referred to as mTOR complex 1 (mTORC1), acts as an important regulator of growth and metabolism. The activity of the complex is regulated through multiple upstream signaling pathways, including those involving Akt and the extracellular-regulated kinase (ERK). Previous studies have shown that, in part, Akt and ERK promote mTORC1 signaling through phosphorylation of a GTPase activator protein (GAP), referred to as tuberous sclerosis complex 2 (TSC2), that acts as an upstream inhibitor of mTORC1. In the present study we extend the earlier studies to show that activation of the Akt and ERK pathways acts in a synergistic manner to promote mTORC1 signaling. Moreover, we provide evidence that the Akt and ERK signaling pathways converge on TSC2, and that Akt phosphorylates residues on TSC2 distinct from those phosphorylated by ERK. The results also suggest that leucine-induced stimulation of mTORC1 signaling occurs through a mechanism distinct from TSC2 and the Akt and ERK signaling pathways. Overall, the results are consistent with a model in which Akt and ERK phosphorylate distinct sites on TSC2, leading to greater repression of its GAP activity, and consequently a magnified stimulation of mTORC1 signaling, when compared with either input alone. The results further suggest that leucine acts through a mechanism distinct from TSC2 to stimulate mTORC1 signaling.  相似文献   

9.

Background

Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.

Objective

In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.

Methods

A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”

Results

The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.

Conclusion

The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.
  相似文献   

10.
Glucose-dependent insulinotropic peptide (GIP) potentiates glucose-induced insulin secretion. In addition, GIP has vasoconstrictive or vasodilatory properties depending on the vascular bed affected. In order to assess whether this effect could be related to differences in GIP receptor expression, several different endothelial cell types were examined for GIP receptor expression. GIP receptor splice variants were detected and varied depending on the endothelial cell type. Furthermore, stimulation of these cells with GIP led to cell type dependent differences in activation of the calcium and cAMP signaling pathways. To our knowledge this is the first physiological characterization of receptors for GIP in endothelial cells.  相似文献   

11.
12.
LL-37 peptide is a multifunctional host defense molecule essential for normal immune responses to infection or tissue injury. In this study we assess the impact of LL-37 on endothelial stiffness and barrier permeability. Fluorescence microscopy reveals membrane localization of LL-37 after its incubation with human umbilical vein endothelial cells (HUVECs). A concentration-dependent increase in stiffness was observed in HUVECs, bovine aortic endothelial cells (BAECs), human pulmonary microvascular endothelial cells, and mouse aorta upon LL-37 (0.5-5 μM) addition. Stiffening of BAECs by LL-37 was blocked by P2X7 receptor antagonists and by the intracellular Ca2(+) chelator BAPTA-AM. Increased cellular stiffness correlated with a decrease in permeability of HUVEC cell monolayers after LL-37 addition compared with nontreated cells, which was similar to the effect observed upon treatment with sphingosine 1-phosphate, and both treatments increased F-actin content in the cortical region of the cells. These results suggest that the antiinflammatory effect of LL-37 at the site of infection or injury involves an LL-37-mediated increase in cell stiffening that prevents increased pericellular permeability. Such a mechanism may help to maintain tissue fluid homeostasis.  相似文献   

13.
Candida albicans is amajor fungal pathogen in humans. Antimicrobial peptides (AMPs) are critical components of the innate immune response in vertebrates and represent the first line of defense against microbial infection. LL-37 is the only member of the human family of cathelicidin AMPs and is commonly expressed by various tissues and cells, including surfaces of epithelia. The candidacidal effects of LL-37 have been well documented, but the mechanisms by which LL-37 kills C. albicans are not completely understood. In this study, we examined the effects of LL-37 on cell wall and cellular responses in C. albicans. Using transmission electron microscopy, carbohydrate analyses, and staining for β-1,3-glucan, changing of C. albicans cell wall integrity was detected upon LL-37 treatment. In addition, LL-37 also affected cell wall architecture of the pathogen. Finally, DNA microarray analysis and quantitative PCR demonstrated that sub-lethal concentrations of LL-37 modulated the expression of genes with a variety of functions, including transporters, regulators for biological processes, response to stress or chemical stimulus, and pathogenesis. Together, LL-37 induces complex responses in C. albicans, making LL-37 a promising candidate for use as a therapeutic agent against fungal infections.  相似文献   

14.
Liu X  Li Y  Zhang Y  Lu Y  Guo W  Liu P  Zhou J  Xiang Z  He C 《PloS one》2011,6(6):e21058

Background

Oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes (OLs), which are responsible for myelination. Myelin is essential for saltatory nerve conduction in the vertebrate nervous system. However, the molecular mechanisms of maturation and myelination by oligodendrocytes remain elusive.

Methods and Findings

In the present study, we showed that maturation of oligodendrocytes was attenuated by sodium orthovanadate (a comprehensive inhibitor of tyrosine phosphatases) and PTPi IV (a specific inhibitor of SHP-2). It is also found that SHP-2 was persistently expressed during maturation process of OPCs. Down-regulation of endogenous SHP-2 led to impairment of oligodendrocytes maturation and this effect was triiodo-L-thyronine (T3) dependent. Furthermore, over-expression of SHP-2 was shown to promote maturation of oligodendrocytes. Finally, it has been identified that SHP-2 was involved in activation of Akt and extracellular-regulated kinases 1 and 2 (ERK1/2) induced by T3 in oligodendrocytes.

Conclusions

SHP-2 promotes oligodendrocytes maturation via Akt and ERK1/2 signaling in vitro.  相似文献   

15.
Tsai PW  Yang CY  Chang HT  Lan CY 《PloS one》2011,6(3):e17755
Candida albicans is the major fungal pathogen of humans. Fungal adhesion to host cells is the first step of mucosal infiltration. Antimicrobial peptides play important roles in the initial mucosal defense against C. albicans infection. LL-37 is the only member of the human cathelicidin family of antimicrobial peptides and is commonly expressed in various tissues and cells, including epithelial cells of both the oral cavity and urogenital tract. We found that, at sufficiently low concentrations that do not kill the fungus, LL-37 was still able to reduce C. albicans infectivity by inhibiting C. albicans adhesion to plastic surfaces, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. Moreover, LL-37-treated C. albicans floating cells that did not adhere to the underlying substratum aggregated as a consequence of LL-37 bound to the cell surfaces. According to the results of a competition assay, the inhibitory effects of LL-37 on cell adhesion and aggregation were mediated by its preferential binding to mannan, the main component of the C. albicans cell wall, and partially by its ability to bind chitin or glucan, which underlie the mannan layer. Therefore, targeting of cell-wall carbohydrates by LL-37 provides a new strategy to prevent C. albicans infection, and LL-37 is a useful, new tool to screen for other C. albicans components involved in adhesion.  相似文献   

16.
LL-37 is the only cathelicidin-derived polypeptide found in humans. Its eclectic function makes this peptide one of the most intriguing chemical defense agents, with crucial roles in moderating inflammation, promoting wound healing, and boosting the human immune system. LL-37 kills both prokaryotic and eukaryotic cells through physical interaction with cell membranes. In order to study its active conformation in membranes, we have reconstituted LL-37 into dodecylphosphocholine (DPC) micelles and determined its three-dimensional structure. We found that, under our experimental conditions, this peptide adopts a helix-break-helix conformation. Both the N- and C-termini are unstructured and solvent exposed. The N-terminal helical domain is more dynamic, while the C-terminal helix is more solvent protected and structured (high density of NOEs, slow H/D exchange). When it interacts with DPC, LL-37 is adsorbed on the surface of the micelle with the hydrophilic face exposed to the water phase and the hydrophobic face buried in the micelle hydrocarbon region. The break between the helices is positioned at K12 and is probably stabilized by a hydrophobic cluster formed by I13, F17, and I20 in addition to a salt bridge between K12 and E16. These results support the proposed nonpore carpet-like mechanism of action, in agreement with the solid-state NMR studies, and pave the way for understanding the function of the mature LL-37 at the atomic level.  相似文献   

17.
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.  相似文献   

18.

Background

A diverse range of factors influence clinicians' decisions regarding the allocation of patients to different treatments for coronary artery disease in routine cardiology clinics. These include demographic measures, risk factors, co-morbidities, measures of objective cardiac disease, symptom reports and functional limitations. This study examined which of these factors differentiated patients receiving angioplasty from medication; bypass surgery from medication; and bypass surgery from angioplasty.

Methods

Univariate and multivariate logistic regression analyses were conducted on patient data from 214 coronary artery disease patients who at the time of recruitment had been received a clinical assessment and were reviewed by their cardiologist in order to determine the form of treatment they were to undergo: 70 would receive/continue medication, 71 were to undergo angioplasty and 73 were to undergo bypass surgery.

Results

Analyses differentiating patients receiving angioplasty from medication produced 9 significant univariate predictors, of which 5 were also multivariately significant (left anterior descending artery disease, previous coronary interventions, age, hypertension and frequency of angina). The analyses differentiating patients receiving surgery from angioplasty produced 12 significant univariate predictors, of which 4 were multivariately significant (limitations in mobility range, circumflex artery disease, previous coronary interventions and educational level). The analyses differentiating patients receiving surgery from medication produced 14 significant univariate predictors, of which 4 were multivariately significant (left anterior descending artery disease, previous cerebral events, limitations in mobility range and circumflex artery disease).

Conclusion

Variables emphasised in clinical guidelines are clearly involved in coronary artery disease treatment decisions. However, variables beyond these may also be important factors when therapy decisions are undertaken thus their roles require further investigation.  相似文献   

19.
Mechanism of lipid bilayer disruption by the human antimicrobial peptide,LL-37   总被引:10,自引:0,他引:10  
LL-37 is an amphipathic, alpha-helical, antimicrobial peptide. (15)N chemical shift and (15)N dipolar-shift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with (31)P NMR. The (31)P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.  相似文献   

20.
Nan YH  Bang JK  Jacob B  Park IS  Shin SY 《Peptides》2012,35(2):239-247
To develop novel antimicrobial peptides (AMPs) with shorter lengths, improved prokaryotic selectivity and retained lipolysaccharide (LPS)-neutralizing activity compared to human cathelicidin AMP, LL-37, a series of amino acid-substituted analogs based on IG-19 (residues 13-31 of LL-37) were synthesized. Among the IG-19 analogs, the analog a4 showed the highest prokaryotic selectivity, but much lower LPS-neutralizing activity compared to parental LL-37. The analogs, a5, a6, a7 and a8 with higher hydrophobicity displayed LPS-neutralizing activity comparable to that of LL-37, but much lesser prokaryotic selectivity. These results indicate that the proper hydrophobicity of the peptides is crucial to exert the amalgamated property of LPS-neutralizing activity and prokaryotic selectivity. Furthermore, to increase LPS-neutralizing activity of the analog a4 without a remarkable decrease in prokaryotic selectivity, we synthesized Trp-substituted analogs (a4-W1 and a4-W2), in which Phe(5) or Phe(15) of a4 is replaced by Trp. Despite their same prokaryotic selectivity, a4-W2 displayed much higher LPS-neutralizing activity compared to a4-W1. When compared with parental LL-37, a4-W2 showed retained LPS-neutralizing activity and 2.8-fold enhanced prokaryotic selectivity. These results suggest that the effective site for Trp-substitution when designing novel AMPs with higher LPS-neutralizing activity, without a remarkable reduction in prokaryotic selectivity, is the amphipathic interface between the end of the hydrophilic side and the start of the hydrophobic side rather than the central position of the hydrophobic side in their α-helical wheel projection. Taken together, the analog a4-W2 can serve as a promising template for the development of therapeutic agents for the treatment of endotoxic shock and bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号