首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The effect of DNR and MIT on erythrocyte membrane structure was examined using Electron Spin Resonance spectroscopy and the fluorimetric technique. The results suggest that the in vivo interaction of the drugs with the RBCs of AML patients led to a perturbation in the structure of plasma membrane components. Differences between DNR and MIT were only noted in the interaction of the drugs with deeper regions of the lipid bilayer  相似文献   

2.
To improve the ability of flow cytometry to detect multidrug-resistant cells, we studied the extent to which cell volume heterogeneity accounts for the variance of intracellular daunorubicin (DNR) content. For P388 murine or HL-60 human leukemia cells exposed to DNR (1 micrograms/ml, 60 min), log intracellular DNR content varied in direct proportion to log cell volume measured by flow cytometry, with a correlation coefficient of .9. This relationship was confirmed by cell sorting based on intracellular DNR content with subsequent volume determination of the sorted cells. Normalization of intracellular DNR content for cell volume (thus obtaining intracellular DNR concentration) was accomplished by subtracting log cell volume from log intracellular DNR content for each cell. This resulted in a 34% decrease (range 23-58%) in standard deviation compared to DNR content measurements without volume normalization for all cell types tested. Following exposure to DNR (as above), intracellular DNR content of drug-sensitive P388 or HL-60 cells measured by flow cytometry was 12- and 8-fold greater than that of the multidrug-resistant sublines P388/ADR and HL-60/AR, respectively. However, because of the variance of intracellular DNR content, the predictive value of flow-cytometric determination of intracellular DNR content as a discriminant assay for detecting the frequency of drug-resistant cells in a mixed population was acceptable only when the frequency of resistant cells in the population exceeded 10%. In contrast, volume normalization of intracellular DNR content enhanced the ability of the flow-cytometric assay to discriminate resistant cells by 10-fold for P388 cells and 100-fold for HL-60 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Uptake and efflux of two anthracyclines, idarubicin (IDA) and daunorubicin (DNR), was studied in childhood acute leukemia samples. A comparison of IDA and DNR transport phenomena in relation to drug cytotoxicity and expression of P-glycoprotein (PGP) was made. Intracellular content of IDA/DNR was determined by flow cytometry using the fluorescent properties of the drugs. In vitro drug cytotoxicity was measured by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. PGP expression was analysed by flow cytometry. The uptake and efflux rates were non-significantly higher for IDA than DNR. There were no differences between three types of leukemia with respect to drug content during accumulation and retention. After correction for the cell volume, intracellular concentration of both drugs in each moment of uptake and efflux was significantly lower in relapsed ALL and AML samples in comparison with initial ALL cells. Efflux, but not uptake, of both drugs was inversely correlated with PGP expression and IDA, but not DNR, cytotoxicity. The cytotoxicity was correlated with drug accumulation for both drugs and with drug retention for IDA. In conclusion, it seems that (1) intracellular content was related to the lipophilic properties of the drugs rather than to the type of leukemia, (2) decreased intracellular concentration of both drugs might have an impact on compromised therapy results in AML and relapsed ALL children, (3) IDA presents higher cytotoxicity, which possibly might be decreased by the presence of PGP. These results might have a practical impact on the rational design of new chemotherapy protocols.  相似文献   

4.
Irradiation of human melanoma (MeWo, Be11) and squamous cell carcinoma (4451, 4197) cells induces cell cycle blocks from which the cells recover to re-enter mitosis after 40-60 h. In the TP53 mutant cell lines, MeWo and 4451, irradiation induces a G(2)-phase block, where the fraction of cells in G(2) phase reaches a maximum after 18-20 h. In the TP53 wild-type cell lines, 4197 and Be11, a G(1)- and G(2)-phase block is reached 12 and 16 h postirradiation, respectively. Addition of pentoxifylline after irradiation at the time when the number of cells in G(2) phase has reached a maximum shortens the normal recovery from G(2)-phase block to approximately 7 h. Addition of daunorubicin, melphalan and cisplatin under these conditions markedly enhanced drug toxicity. In the TP53-mutated cell lines MeWo and 4451, the survival ratio at 7 Gy measured by colony formation was 2.3-2.8, 8.6-85 and 52-74 for daunorubicin, melphalan and cisplatin, respectively. In the TP53 wild-type cell lines, the corresponding survival ratios were found to be 1.3-1.4, 2.3-3.0 and 1.2-2.6, respectively. The survival ratios are for clonogenic survival after 7 Gy and 2 mM pentoxifylline and measure the influence of drug doses that ensure 95% survival in nonirradiated controls. The results indicate that the G(2)-phase block is a crucial event in the damage response that can be manipulated to achieve a significant enhancement of drug toxicity. These effects are particularly pronounced in TP53 mutant cells and are observed at drug doses well below the clinical range.  相似文献   

5.
We examined molecular events and morphological features associated with apoptosis induced by anthraquinone anticancer drugs aclarubicin, mitoxantrone and doxorubicin in two spontaneously immortalized cell lines (NIH 3T3 and B14) in relation to cytotoxicity of these drugs. The investigated cells showed similar sensitivity to aclarubicin but different sensitivity to doxorubicin and mitoxantrone: mitoxantrone was the most cytotoxic drug in both cell lines. All three drugs triggered both apoptosis and necrosis but none of these processes was positively correlated with their cytotoxicity. Apoptosis was the prevalent form of cell kill by aclarubicin, while doxorubicin and mitoxantrone induced mainly the necrotic mode of cell death. The extent and the timing of apoptosis were strongly dependent on the cell line, the type of the drug and its dose, and were mediated by caspase-3 activation. A significant increase in caspase-3 activity and the percentage of apoptotic cells, oligonucleosomal DNA fragmentation, chromatin condensation and formation of apoptotic bodies was observed predominantly in B14 cells. NIH 3T3 cells showed lesser changes and a lack of DNA fragmentation. Aclarubicin was the fastest acting drug, inducing DNA fragmentation 12 h earlier than doxorubicin, and 24 h earlier than mitoxantrone. Caspase-3 inhibitor Ac-DEVD-CHO did not show any significant effect on drug cytotoxicity and DNA nucleosomal fragmentation.  相似文献   

6.
Capillary electrophoresis (CE) with laser-induced fluorescence detection was applied to quantify daunorubicin and daunorubicinol in plasma. Separation was carried out in a 47 cm×50 μm I.D. fused-silica capillary, with a running buffer, pH 5 containing 60 μM spermine and 70% acetonitrile. Sample preparation was done either by protein precipitation with acetonitrile or by liquid–liquid extraction. The assay can be applied in a concentration range from 40 mg/l down to 2 μg/l for daunorubicin and from 1 mg/l to 2 μg/l for daunorubicinol. Precision and accuracy were between 2.9 and 14.5% (n=6) on 1 day and between 1.0 and 14.7% from day to day (n=6) for both analytes. Thus, the CE method enables precise and accurate quantification of daunorubicin and daunorubicinol in small sample volumes over a wide concentration range.  相似文献   

7.
Inhibition of DNA synthesis by rubomycin (daunorubicin), carminomycin and doxorubicin in the spleen, liver, kidneys and heart was studied on mice. The antibiotics were administered intravenously in a dose of 0.3 LD50. The inhibition level was estimated by incorporation of 3H-thymidine. The time courses of DNA synthesis inhibition by daunorubicin, carminomycin and doxorubicin markedly differed, whereas the patterns of their inhibition curves for all the organs were close. The maximum inhibition of DNA synthesis by carminomycin was observed in 6 hours. After that period it gradually restored. Doxorubicin induced the maximum inhibition of DNA synthesis in 24-48 hours after its administration. Daunorubicin induced two maxima in inhibition of DNA synthesis i. e. in 6 and 48 hours. Definite correlation between the levels of DNA synthesis inhibition by the antibiotics and their toxic action was shown.  相似文献   

8.
Recent studies with the anthracycline Adriamycin have demonstrated its activation by formaldehyde and subsequent binding to DNA in vitro. Since formaldehyde levels are known to be higher in cells of myeloid origin and the structurally related drug mitoxantrone is most effective against cancers of myeloid origin, this indicates a possible role of formaldehyde in the activation of mitoxantrone. In vitro studies revealed that the activation of mitoxantrone by formaldehyde leads to the formation of drug-DNA adducts. These adducts stabilised DNA such that they functioned as virtual interstrand crosslinks. The interstrand crosslinks were formed in the presence of mitoxantrone and formaldehyde in a time- and concentration-dependent manner. In the absence of formaldehyde no crosslinks were formed, indicating a key role in drug activation and DNA binding. The adducts (virtual crosslinks) were relatively unstable with 50% crosslinks remaining after 10 min at 60 degrees C in 45% formamide. Like Adriamycin, the mitoxantrone-formaldehyde-DNA crosslinks are heat labile and do not display the stability associated with covalent interstrand crosslinks.  相似文献   

9.
Self-association of daunorubicin   总被引:1,自引:0,他引:1  
  相似文献   

10.
A novel capillary electrophoresis (CE) with chemiluminescence (CL) detection method for the determination of mitoxantrone (MTX) has been developed, which based on the CL reaction of potassium ferricyanide with luminol in sodium hydroxide medium sensitized by MTX. Under optimum analytical conditions, MTX is determined over the range of 7.0 × 10−8–1.0 × 10−6 M with a detection limit of 1.0 × 10−8 M. The relative standard deviation (RSD) was 3.7%, 2.6% and 3.0% for 7.0 × 10−8, 5.0 × 10−7 and 1.0 × 10−6 M MTX (n = 11), respectively. In laboratory-built CE–CL apparatus, the proposed method has been applied to determination of MTX in commercial drug and spiked in human urine and plasma with satisfactory results.  相似文献   

11.
Brück TB  Brück DW 《Biochimie》2011,93(2):217-226
Mitoxantrone (MH2X), an anthraquinone-type anti-cancer agent used clinically in the treatment of human malignancies, is oxidatively activated by the peroxidase/H2O2 enzyme system. In contrast to the enzymatic mechanisms of drug oxidation, the chemical transformations of MH2X are not well described. In this study, MH2X metabolites, produced by the horseradish, lacto- or lignin peroxidase (respectively HRP, LPO and LIP)/H2O2 system, were investigated by steady-state spectrokinetic and HPLC-MS methods. At an equimolar mitoxantrone/H2O2 ratio, the efficacy of the enzyme-catalyzed oxidation of mitoxantrone decreased in the following order: LPO > HRP > LIP, which accorded with the decreasing size of the substrate access channel in the enzyme panel examined. In all cases, the central drug oxidation product was the redox-active cyclic metabolite, hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione (MH2), previously identified in the urine of mitoxantrone-treated patients. As the reaction progressed, data gathered in this study suggests that further oxidation of the MH2 side-chains occurred, yielding the mono- and dicarboxylic acid derivatives respectively. Based on the available data a further MH2 derivative is proposed, in which the amino-alkyl side-chain(s) are cyclised. With increasing H2O2 concentrations, these novel MH2 derivatives were oxidised to additional metabolites, whose spectral properties and MS data indicated a stepwise destruction of the MH2 chromophore due to an oxidative cleavage of the 9,10-anthracenedione moiety. The novel metabolites extend the known sequence of peroxidase-induced mitoxantrone metabolism, and may contribute to the cytotoxic effects of the drug in vivo. Based on the structural features of the proposed MH2 oxidation products we elaborate on various biochemical mechanisms, which extend the understanding of mitoxantrone’s pharmaceutical action and its clinical effectiveness with a particular focus on peroxidase-expressing solid tumors, such as breast carcinoma.  相似文献   

12.
The effects of mitoxantrone and bisantrene on angiogenic responses induced by tumor cell-conditioned media in the avascular cornea of rat eye have been evaluated. Both mitoxantrone and bisantrene effectively inhibited, in a concentration-dependent manner, angiogenesis induced by conditioned media obtained from either a hamster buccal pouch carcinoma cell line or P388D1 murine macrophage-like cells. Whereas vessel ingrowth in corneas containing tumor cell-conditioned media was detected as early as day 2 or 3 and was maximal by day 7, inclusion of mitoxantrone or bisantrene in the conditioned media at a 1:1 ratio (160 microM mitoxantrone or 32 microM bisantrene) resulted in complete inhibition of angiogenesis throughout the 14-day evaluation period. When concentrations of 64 and 32 microM mitoxantrone or 13 and 6.4 microM bisantrene were employed there was a marked delay in the appearance of capillary blood vessels (day 5 to 7) and a reduction in the intensity of angiogenic responses. No untoward toxicity to the tissue was observed at the concentrations of mitoxantrone or bisantrene employed.  相似文献   

13.
Summary Streptomyces peucetius cells were immobilized by entrapment in calcium alginate and a photosensitive synthetic polymer, and used for the production of daunorubicin (daunomycin), which is known to be an antitumour reagent. The use of cultivation media removed insoluble components in a natural medium prevented rapid decrease in daunorubicin titer after maximum production. These entrapped cells could be used at least five times for repeated daunorubicin production; the total cultivation period was 45 days.  相似文献   

14.
Although anthracycline antibiotics daunorubicin (DR), doxorubicin (DX), and epirubicin (ER) possess minor differences in their chemical structures, large differences are noted in their clinical use, as well as in cellular and plasma pharmacokinetic parameters in vivo. Immunocytochemistry for DR, DX, or ER was developed using an anti-DR monoclonal antibody (ADM-1-11), which has been demonstrated to react equally well with each of the three drugs, and therefore it was used for comparing their accumulation in several rat tissue cells after a single i.v. injection of each drug. In the kidney, immunoreactivity for each drug was distributed in essentially the same pattern and in the same strength 2 h after injection, but quite differently distributed in kidney cells thereafter, so that at 120-h post-injection significant amounts of DX and ER remained, but DR had almost completely vanished. Similar patterns of accumulation were observed in cells of other tissues including the pancreas, hair follicle, and stomach, with the exception of the intestine in which none of the three drugs remained after 120 h. These results appear to be supported by previous pharmacokinetic studies on the anthracyclines. The mechanism for such differences among the three drugs remains obscure, but the hydroxyl group at C-14 of DX and ER molecule might be related to the strong propensity of DX and ER to accumulate in tissue cells. The present results should contribute to the understanding of the mechanisms of the differences in the pharmacokinetics, as well as the possibly in anti-tumor activities of the anthracyclines.  相似文献   

15.
Doxorubicin and daunorubicin, the anthracycline antitumor agents, were evaluated for their in vitro and in vivo effect on phosphodiesterase (PDE) activity in mouse tissues. Doxorubicin at a concentration of 10(-4)M inhibited cardiac c-AMP (adenosine 3',5', monophosphate) PDE activity 50% of the control whereas in lungs and spleen, the activity was inhibited only 20%. On the contrary no effect was seen in kidney and liver. In addition, cardiac c-GMP (guanosine 3',5' monophosphate) PDE appeared less sensitive to doxorubicin than c-AMP PDE though inhibition in heart was more pronounced than in any other tissue. It appears that daunorubicin inhibits c-AMP PDE activity in heart markedly less than doxorubicin. Kinetic studies indicate that both inhibitions of c-AMP and c-GMP PDE by doxorubicin were non-competitive with substrate. Intravenous administration of 20 and 30 mg/kg of free doxorubicin to CDF1 mice resulted in 33 and 39% decreases in cardiac c-AMP PDE activity respectively by 72 hrs. In contrast, similar intravenous injections of same doses of doxorubicin entrapped in cardiolipin liposomes had no effect on c-AMP PDE activity in any tissues. These studies demonstrate the relative selectivity of the cardiac cyclic nucleotide PDE inhibitory effect of doxorubicin suggesting that this inhibition might be one aspect of the mechanism of anthracycline-induced cardiotoxicity.  相似文献   

16.
Ametantrone and mitoxantrone, two new anthracenedione antineoplastic agents, produced a concentration-dependent inhibition of hepatic microsomal lipid peroxidation. Malondialdehyde production was diminished from 10.6 nmoles/mg/60 min to 3.3 and 5.4 nmoles/mg/60 min, in the presence of 100 μM mitoxantrone and ametantrone, respectively. Under similar conditions, Adriamycin stimulated lipid peroxidation over twofold. In addition, both mitoxantrone and ametantrone inhibited Adriamycin-stimulated lipid peroxidation, with 50% inhibition occurring at concentrations of 4 and 6 μM, respectively. Microsomal superoxide production was not significantly inhibited at anthracenedione concentrations which markedly decreased lipid peroxidation, suggesting that inhibition of lipid peroxidation was not the result of inhibition of superoxide generation. These results correlate with the lack of anthracenedione cardiotoxicity and also demonstrate anthracenedione inhibition of lipid peroxidation at micromolar concentrations; an observation with potential therapeutic significance.  相似文献   

17.
Daunorubicin (DNR) or doxorubicin (DOX) was modified with one of four "linker reagents" to produce electrophilic drug analogues for synthesis of bioconjugates. Synthesis and characterization of two new reagents [p-isothiocyanatobenzoyl chloride and 3-(p-isothiocyanatophenyl) propionyl chloride] are described here for the first time. Adding one of the new reagents, bromoacetyl bromide, or p-(fluorosulfonyl)-benzoyl chloride in chloroform to an alkaline aqueous solution of DNR (or DOX) provided excellent yields of the corresponding, electrophilic 3'-N-amide analogue. The DNR and DOX analogues were characterized by thin-layer chromatography, nuclear magnetic resonance spectroscopy, and infrared spectroscopy. Bioconjugates were produced with the electrophilic DNR or DOX analogues by mixing them with bovine serum albumin (BSA), mouse IgG, or a monoclonal antibody (OC125, which specifically binds to the CA125 antigen from human ovarian carcinoma). The relative reactivity of the 3'-N-substituents toward protein is p-(fluorosulfonyl)benzoyl greater than phenylisothiocyanato greater than bromoacetyl. Overall, the new phenyl isothiocyanate acid chlorides are superior to p-(fluorosulfonyl)benzoyl chloride or bromoacetyl bromide as reagents with which to produce electrophilic DNR or DOX analogues for conjugation with monoclonal antibodies. The bioconjugates DNR-OC125 and DOX-OC125 are selectively toxic to two human ovarian cancer cell lines in vitro (1) and bind with high specificity to human ovarian tumor sections (2) that express the CA125 antigen.  相似文献   

18.
Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3′ position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety (DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction of DNA breaks and DNA–protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites to DNA. It is hypothesized that the replacement of the primary amino group (–NH2) at the C-3′ position of the daunosamine moiety by a trisubstituted amidino group (–N=CH–NRR) may be a route to the synthesis of anthracycline derivatives with enhanced ability to form covalent adducts to DNA.  相似文献   

19.
20.
The antineoplastic drug daunorubicin and 15 other anthracyclines were tested for their ability to induce prophage lambda in Escherichia coli K12. Prophage lambda induction by daunorubicin was obtained in excision-repair deficient uvr- bacteria at doses about 3-fold lower than in excision-repair proficient uvr+ cells; this suggests that some of the lesions produced in DNA by daunorubicin are subject to excision repair and may be adducts. Daunorubicin seems to be converted to active species capable of causing prophage inducing lesions in DNA by bacterial enzymes. The antineoplastic and prophage inducing potencies of the anthracyclines were compared in a blind test. These two parameters were correlated for two thirds of the compounds. Such a correlation supports the idea that the antineoplastic activity of the anthracyclines is a consequence of their capacity to damage DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号