首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One-year crop rotations with corn or highly resistant soybean were evaluated at four locations for their effect on Rotylenchulus reniformis population levels and yield of a subsequent cotton crop. Four nematicide (aldicarb) regimes were included at two of the locations, and rotation with reniform-susceptible soybean was included at the other two locations. One-year rotations to corn or resistant soybean resulted in lower R. reniformis population levels (P ≤ 0.05) than those found in cotton at three test sites. However, the effect of rotation on nematode populations was undetectable by mid-season when cotton was grown the following year. Cotton yield following a one-year rotation to resistant soybean increased at all test locations compared to continuous cotton, and yield following corn increased at three locations. The optimum application rate for aldicarb in this study was 0.84 kg a.i./ha in furrow. Side-dress applications of aldicarb resulted in yield increases that were insufficient to cover the cost of application in 3 of the 4 years.  相似文献   

2.
Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes.  相似文献   

3.
The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them.  相似文献   

4.
Three field experiments were established in a loamy sand soil in the Coastal Plain of North Carolina to determine downward movement of aldicarb and fenamiphos with a nematode bioassay. Penetration of bioassay plant roots by Meloidogyne incognita was measured at 1, 3, 7, 14, 21, and 28 days after treatment in the greenhouse as a means of determining nematicide effectiveness. Chemical movement was similar in planted and fallow soil. Nematicidal activity was greater in soil collected from the 0 to 10 cm depth than from the 10 to 20 cm depth. Fenamiphos suppressed host penetration by the nematode more than aldicarb under the high rainfall (19 cm) and low soil temperatures that occurred soon after application in the spring. During the summer, which had 13 cm precipitation and warmer soil temperatures, both chemicals performed equally well at the 0 to 10 cm depth. At the lower soil level (10 to 20 cm), aldicarb limited nematode penetration of host roots more quickly than fenamiphos. Both of these chemicals moved readily in the sandy soil in concentrations sufficient to control M. incognita. Although some variability was encountered in similar experiments, nematodes such as M. incognita have considerable potential as biomonitors of nematicide movement in soil.  相似文献   

5.
Granular and liquid commercial humates, with micronutrients, and a microbial fermentation product were compared in several combinations with nematicides for their effects on cotton lint yield and root-knot nematode suppression. Fumigant nematicides effectively reduced cotton root galling caused by root-knot nematodes, and cotton lint yields increased. Organophosphates and carbamates were not effective. Occasionally, cotton lint yields were increased or maintained with combination treatments o f humates, micronutrients, and a microbial fermentation product, but galling o f cotton roots by root-knot nematodes was usually not reduced by these treatments.  相似文献   

6.
A drip irrigation delivery system was used to infest field sites with the plant-parasitic root-knot nematodes, Meloidogyne incognita. Juvenile or egg inocula passed through the system without blockage of emitters or harm to the nematodes. Field sites so infested were available for experimentation. Delivery of approximately 5 x 10⁴ to 10⁵ juveniles or 10⁵ to 3 x 10⁵ eggs per emitter through the drip system resulted in heavy root galling of tomatoes planted next to the drip emitters. Nematodes feeding on bacteria (Acrobeloides sp.) and on fungi (Deladenus durus) also were successfully applied through the drip system. This method has potential for uniformly infesting experimental sites with plant-parasitic or entomogenous nematodes and for manipulation of nematode community structure for soil ecological studies.  相似文献   

7.
Field experiments were conducted for control of the southern root-knot nematode (Meloidogyne incognita) and cotton seedling disease fungi (primarily Thielaviopsis basicola) in one naturally infested field during 1999 and 2000 and in three additional fields in 2000. Treatments included: seed-applied fungicides (triadimenol + mefenoxam + thiram and carboxin + PCNB + mefenoxam), cultivars (Paymaster [PM] 2326 RR and PM 2200 RR), and a nematicide (aldicarb at 0.83 kg a.i/ha). Plant stands were higher (P = 0.02) in the presence of aldicarb (77% emergence) than in its absence (74% emergence). Hypocotyl disease symptom ratings were lower (P = 0.0001) following triadimenol + mefenoxam + thiram seed treatment (0.53) as compared with carboxin + PCNB + mefenoxam (0.93). Root necrosis was lower (P = 0.002) following triadimenol + mefenoxam + thiram seed treatment (27%) as compared with carboxin + PCNB + mefenoxam (34%). In one field, in both years, aldicarb was associated with more root necrosis (58%) than in its absence (46%) (P = 0.004). At three other sites aldicarb did not affect root necrosis. Population densities of Meloidogyne incognita eggs and juveniles at midseason were greater (P = 0.005, P = 0.003, respectively) on PM 2200 RR (less resistant) than on PM 2326 RR (more resistant). Yield was affected by the plant genotype by aldicarb interaction (P = 0.02) but not by seed treatments. Aldicarb effect on yield was dependent on cultivar, whereas affect of seed treatment on root health was consistent and independent of cultivar and aldicarb. No conditions were identified when use of triadimenol + mefenoxam was detrimental.  相似文献   

8.
Strawberry roots were sampled through the year to determine the populations and distribution of Pratylenchus penetrans and Meloidogyne hapla. Three strawberry root types were sampled—structural roots; feeder roots without secondary tissues; and suberized, black perennial roots. Both lesion and root-knot nematodes primarily infected feeder roots from structural roots or healthy perennial roots. Few nematodes were recovered from soil, diseased roots, or suberized roots. Lesion nematode recovery was correlated with healthy roots. In both 1997 and 1998, P. penetrans populations peaked about day 150 (end of May) and then declined. The decline in numbers corresponded to changes in total strawberry root weight and root type distribution. The loss of nematode habitat resulted from loss of roots due to disease and the transition from structural to suberized perennial roots. Meloidogyne hapla juvenile recovery peaked around 170 days (mid June) in 1997 and at 85, 147, 229, and 308 days (late March, late May, mid August, and early November, respectively) in 1998. There appear to be at least four generations per year of M. hapla in Connecticut. Diagnostic samples from an established strawberry bed may be most reliable and useful when they include feeder roots taken in late May.  相似文献   

9.
For control of the root-knot nematode, Meloidogyne incognita, and the pathogenic wilt fungus, Fusarium oxysporum, on cotton, soil fumigants were applied in the field at conventional and higher rates. Conventional rates suppressed Fusarium wilt but higher rates gave quicker early growth, better stands, less stand loss over the season, a lower percentage of plants infected with wilt, fewer plants with vascular discoloration, and fewer nematodes. The best treatment about doubled the yields of untreated controls in one experiment and quadrupled them in another.  相似文献   

10.
Growth and yield of cotton were best with combinations of fumigants and organophosphate and carbamate nematicides. Organophosphates or carbamates used alone did not give season-long control of root-knot nematodes. Long-term control was poor because the temporary sublethal effects of these materials diminished soon enough lhat the nematodes could reproduce. The nematodes survived the treatments and a year of nonhost culture, and damaged a susceptible host crop 2 years after treatment. No such damage occurred in plots treated with fumigant, fumigant plus organophosphate, or fumigant plus carbamate. Treatment of seed and treatment of cotton, either in furrow at planting or sidedressing at midseason, with organophosphate and carbamate nematicides resulted in little or no yield increase, because nematode control was only minimal and temporary; or in a yield decrease, because the toxicity of the materials was manifested when nematode populations were low.  相似文献   

11.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

12.
The effects of aldicarb, oxamyl, 1,3-D, and plastic mulch (solarization) on soil population densities of the golden nematode (GN) Globodera rostochiensis was assessed in field and microplot experiments with different soil types. Oxamyl was evaluated in both soil and foliar treatments, whereas aldicarb, 1,3-D, and solarization were applied only to soil. Soil applications of aldicarb and oxamyl resulted in reduced nematode populations after GN-susceptible potatoes in plots with initial population densities (Pi) of > 20 and 7.5 eggs/cm³ soil, respectively, but nematode populations increased in treated soil when Pi were less than 20 and 7.5 eggs/cm³soil. In clay loam field plots with Pi of 19-76 eggs/cm³ soil, nematode densities increased even with repeated foliar applications of oxamyl, whereas nematode populations at Pi greater than 76 eggs/cm³ soil were reduced by foliar oxamyl. Treatment with 1,3-D or solarization, singly or in combination, reduced GN soil population densities regardless of soil type or Pi. Temperatures lethal to GN were achieved 5 cm deep under clear plastic but not 10 or 15 cm deep.  相似文献   

13.
Variability in edaphic factors such as clay content, organic matter, and nutrient availability within individual fields is a major obstacle confronting cotton producers. Adaptation of geospatial technologies such global positioning systems (GPS), yield monitors, autosteering, and the automated on-and-off technology required for site-specific nematicide application has provided growers with additional tools for managing nematodes. Multiple trials in several states were conducted to evaluate this technology in cotton. In a field infested with Meloidogyne spp., both shallow (0 to 0.3 m) and deep (0 to 0.91 m) apparent electrical conductivity (ECa) readings were highly correlated with sand content. Populations of Meloidogyne spp. were present when shallow and deep EC values were less than 30 and 90 mS/m, respectively. Across three years of trials in production fields in which verification strips (adjacent nematicide treated and untreated rows across all soil zones) were established to evaluate crop response to nematicide application, deep EC values from 27.4-m wide transects of verification strips were more predictive of yield response to application of 1,3-dichloropropene than were shallow EC values in one location and both ECa values equally effective at predicting responses at the second location. In 2006, yields from entire verification strips across three soil zones in four production fields showed that nematicide response was greatest in areas with the lowest EC values indicating highest content of sand. In 2008 in Ashley and Mississippi Counties, AR, nematicide treatment by soil zone resulted in 36% and 42% reductions in the amount of nematicide applied relative to whole-field application. In 2007 in Bamberg County, SC, there was a strong positive correlation between increasing population densities of Meloidogyne incognita and increasing sand content. Trials conducted during 2007 and 2009 in South Carolina against Hoplolaimus columbus showed a stepwise response to increasing rates of aldicarb in zone 1 but not in zones 2 and 3. Site-specific application of nematicides has been shown to be a viable option for producers as a potential management tool against several nematode pathogens of cotton.  相似文献   

14.
Aldicarb, ethoprop, and fenamiphos were evaluated for their efficacy in controlling various species of root-knot nematodes on flue-cured tobacco and for their residual activity, as determined through periodic sampling and bioassays of soil taken from field plots. Field experiments were conducted at five locations over 2 years with flue-cured tobacco. Soil in plots treated with nematicides were formed into high, wide beds before transplanting with ''Coker 371-Gold'' or ''K 326'' tobacco. Residual control of Meloidogyne spp. was greatest (P ≤ 0.05) with fenamiphos (in some cases up to 10 weeks, as measured in tomato bioassays of infested soil and root fragments). Suppression of nematode reproduction by ethoprop was short-lived, and numbers of second-stage juveniles + eggs and numbers of galls in bioassays sometimes surpassed those of untreated plots within 4 weeks after treatment. Aldicarb gave intermediate control over time as compared to the other compounds. Although nematicidal efficacy of all compounds varied with site and season, fenamiphos and aldicarb generally produced the highest yields.  相似文献   

15.
The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol of nematodes.  相似文献   

16.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

17.
Field tests were conducted to determine if differences in response to nematicide application (i.e., root-knot nematode (RKN) populations, cotton yield, and profitability) occurred among RKN management zones (MZ). The MZ were delineated using fuzzy clustering of five terrain (TR) and edaphic (ED) field features related to soil texture: apparent soil electrical conductivity shallow (ECa-shallow) and deep (ECa-deep), elevation (EL), slope (SL), and changes in bare soil reflectance. Zones with lowest mean values of ECa- shallow, ECa- deep, NDVI, and SL were designated as at greater risk for high RKN levels. Nematicide-treated plots (4 rows wide and 30 m long) were established in a randomized complete block design within each zone, but the number of replications in each zone varied from four to six depending on the size of the zone.The nematicides aldicarb (Temik 15 G) and 1,3-dichloropropene (1,3-D,Telone II) were applied at two rates (0.51 and 1.0 kg a.i./ha for aldicarb, and 33.1 and 66.2 kg a.i./ha for 1,3-D) to RKN MZ in commercial fields between 2007 and 2009. A consolidated analysis over the entire season showed that regardless of the zone, there were not differences between aldicarb rates and 1,3-D rates. The result across zones showed that 1,3-D provided better RKN control than did aldicarb in zones with low ECa values (high RKN risk zones exhibiting more coarse-textured sandy soils). In contrast, in low risk zones with relatively higher ECa values (heavier textured soil), the effects of 1,3-D and aldicarb were equal and application of any of the treatments provided sufficient control. In low RKN risk zones, a farmer would often have lost money if a high rate of 1,3-D was applied. This study showed that the effect of nematicide type and rate on RKN control and cotton yield varied across management zones (MZ) with the most expensive treatment likely to provide economic benefit only in zones with coarser soil texture. This study demonstrates the value of site specific application of nematicides based on management zones, although this approach might not be economically beneficial in fields with little variability in soil texture.  相似文献   

18.
Millet, milo, soybean, crotalaria, and Norman pigeon pea were used in conjunction with clean fallow and a nematicide (fensulfothion) for managing nematode populations in the production of tomato transplants (Lycopersicon esculentum Mill.). Glean fallow was the most effective treatment in suppressing nematode numbers. After 2 years in tomato, root-knot nematodes increased in numbers to damaging levels, and fallow was no longer effective for complete control even in conjunction with fensulfothion. After 4 years in tomato, none of the crops used as summer cover crops alone or in conjunction with fensulfothion reduced numbers of root-knot nematodes in harvested tomato transplants sufficiently to meet Georgia certification regulations. Milo supported large numbers of Macroposthonia ornata and Pratylenchus spp. and crotalaria supported large numbers of Pratylenchus spp. Millet, milo, soybean, crotalaria, and pigeon pea are poor choices for summer cover crops in sites used to produce tomato transplants, because they support large populations of root-knot and other potentially destructive nematodes.  相似文献   

19.
Solid CO₂ (dry ice) was added to pots containing soil that was infested either with eggs of the root-knot nematode, Meloidogyne incognita, or with tomato (Lycopersicon esculentum ''Rutgers'') root fragments that were infected with various stages of the nematode. Two hours after dry ice was added, thermocouples in the soil recorded temperatures ranging from -15 °C to -59 °C. One day after treatment with the dry ice, the temperature of the soil was allowed to equilibrate with that of the greenhouse, and susceptible tomato seedlings were planted in pots containing infested soil treated or untreated (controls) with dry ice. After 5 weeks, roots were removed from the pots and nematode eggs were extracted and counted. Plants grown in soil infested with eggs and receiving dry ice treatment had less than 1% of the eggs found in the controls; plants from soil infested with root fragments and receiving dry ice treatment had less than 4% of the eggs found in controls. Dry ice used to lower soil temperature may have potential as a cryonematicide.  相似文献   

20.
Management of Meloidogyne incognita (root-knot nematode) in cotton in the United States was substantially affected by the decision to stop production of aldicarb by its principle manufacturer in 2011. The remaining commercially available tools to manage M. incognita included soil fumigation, nematicide seed treatments, postemergence nematicide application, and cultivars partially resistant to M. incognita. Small plot field studies were conducted on a total of nine sites from 2011–2013 to examine the effects of each of these tools alone or in combinations, on early season galling, late-season nematode density in soil, yield, and value ($/ha = lint value minus chemical costs/ha). The use of a partially resistant cultivar resulted in fewer galls/root system at 35 d after planting in eight of nine tests, lower root-knot nematode density late in the growing season for all test sites, higher lint yield in eight of nine sites, and higher value/ha in six of nine sites. Galls per root were reduced by aldicarb in three of nine sites and by 1,3-dichloropropene (1,3-D) in two of eight sites, relative to the nontreated control (no insecticide or nematicide treatment). Soil fumigation reduced M. incognita density late in the season in three of nine sites. Value/ha was not affected by chemical treatment in four of nine sites, but there was a cultivar × chemical interaction in four of nine sites. When value/ha was affected by chemical treatment, the nontreated control had a similar value to the treatment with the highest value/ha in seven of eight cultivar-site combinations. The next “best” value/ha were associated with seed treatment insecticide (STI) + oxamyl and aldicarb (similar value to the highest value/ha in six of eight cultivar-site combinations). The lowest valued treatment was STI + 1,3-D. In a semi-arid region, where rainfall was low during the spring for all three years, cultivars with partial resistance to M. incognita was the most profitable method of managing root-knot nematode in cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号