首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overexpression of antioxidative enzymes such as CuZn-superoxide dismutase (SOD), Mn-SOD, and catalase has previously been reported to extend life span in transgenic flies (Drosophila melanogaster). The purpose of this study was to determine whether life-extending effects persist if the recipient control strains of flies are relatively long-lived. Accordingly, the life spans of large numbers of replicate control and overexpressor lines were determined in two long-lived genetic backgrounds involving a combined total of >90,000 flies. Significant increases in the activities of both CuZn-SOD and catalase had no beneficial effect on survivorship in relatively long-lived y w mutant flies and were associated with slightly decreased life spans in wild type flies of the Oregon-R strain. The introduction of additional transgenes encoding Mn-SOD or thioredoxin reductase in the same genetic background also failed to cause life span extension. In conjunction with data from earlier studies, the results show that increasing the activities of these major antioxidative enzymes above wild type levels does not decrease the rate of aging in long-lived strains of Drosophila, although there may be some effect in relatively short-lived strains.  相似文献   

2.
The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.  相似文献   

3.
4.
Human-nucleotide-excision repair (NER) deficiency leads to different developmental and segmental progeroid symptoms of which the pathogenesis is only partially understood. To understand the biological impact of accumulating spontaneous DNA damage, we studied the phenotypic consequences of DNA-repair deficiency in Caenorhabditis elegans. We find that DNA damage accumulation does not decrease the adult life span of post-mitotic tissue. Surprisingly, loss of functional ERCC-1/XPF even further extends the life span of long-lived daf-2 mutants, likely through an adaptive activation of stress signaling. Contrariwise, NER deficiency leads to a striking transgenerational decline in replicative capacity and viability of proliferating cells. DNA damage accumulation induces severe, stochastic impairment of development and growth, which is most pronounced in NER mutants that are also impaired in their response to ionizing radiation and inter-strand crosslinks. These results suggest that multiple DNA-repair pathways can protect against replicative decline and indicate that there might be a direct link between the severity of symptoms and the level of DNA-repair deficiency in patients.  相似文献   

5.
The present study was designed to determine the effects of Ganoderma lucidum polysaccharides (GL-PS) on exhaustive exercise-induced oxidative stress in skeletal muscle tissues of mice. The mice were divided into four groups (three GL-PS administered groups and the control group). The control group was administered with distilled water and GL-PS administered groups were administered with GL-PS (50, 100 and 200 mg/kg body weight per day). After 28 days, the mice performed an exhaustive swimming exercise, along with the determination of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) activities and malondialdehyde (MDA) levels in the skeletal muscle of mice. The results showed that GL-PS could increase antioxidant enzymes activities and decrease the MDA levels in the skeletal muscle of mice. This study provides strong evidence that GL-PS supplementation possessed protective effects against exhaustive exercise-induced oxidative stress.  相似文献   

6.
The nematode Caenorhabditis elegans has proven a robust genetic model for studies of aging, including the roles of oxidative stress and protein damage. In this review, we focus on the genetics of select long-lived (e.g., age-1, daf-2, daf-16) and short-lived (e.g., mev-1) mutants that have proven useful in revealing the relationships that exist among oxidative stress, life span, and protein oxidation. The former are known to control an insulin/IGF-1-like pathway in C. elegans, while the latter affect mitochondrial function.  相似文献   

7.

Background

Senescence has been widely detected among mammals, but its importance to fitness in wild populations remains controversial. According to evolutionary theories, senescence occurs at an age when selection is relatively weak, which in mammals can be predicted by adult survival rates. However, a recent analysis of senescence rates found more age-dependent mortalities in natural populations of longer lived mammal species. This has important implications to ageing research and for understanding the ecological relevance of senescence, yet so far these have not been widely appreciated. We re-address this question by comparing the mean and maximum life span of 125 mammal species. Specifically, we test the hypothesis that senescence occurs at a younger age relative to the mean natural life span in longer lived species.

Methodology/Principal Findings

We show, using phylogenetically-informed generalised least squares models, a significant log-log relationship between mean life span, as calculated from estimates of adult survival for natural populations, and maximum recorded life span among mammals (R2 = 0.57, p<0.0001). This provides further support for a key prediction of evolutionary theories of ageing. The slope of this relationship (0.353±0.052 s.e.m.), however, indicated that mammals with higher survival rates have a mean life span representing a greater fraction of their potential maximum life span: the ratio of maximum to mean life span decreased significantly from >10 in short-lived to ∼1.5 in long-lived mammal species.

Conclusions/Significance

We interpret the ratio of maximum to mean life span to be an index of the likelihood an individual will experience senescence, which largely determines maximum life span. Our results suggest that senescence occurs at an earlier age relative to the mean life span, and therefore is experienced by more individuals and remains under selection pressure, in long- compared to short-lived mammals. A minimum rate of somatic degradation may ultimately limit the natural life span of mammals. Our results also indicate that senescence and modulating factors like oxidative stress are increasingly important to the fitness of longer lived mammals (and vice versa).  相似文献   

8.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is a neurodegenerative disease caused by a reduction in the levels of the mitochondrial protein frataxin, the function of which remains a controversial matter. Several therapeutic approaches are being developed to increase frataxin expression and reduce the intramitochondrial iron aggregates and oxidative damage found in this disease. In this study, we tested separately the response of a Drosophila RNAi model of FRDA ( Llorens et al., 2007) to treatment with the iron chelator deferiprone (DFP) and the antioxidant idebenone (IDE), which are both in clinical trials. The FRDA flies have a shortened life span and impaired motor coordination, and these phenotypes are more pronounced in oxidative stress conditions. In addition, under hyperoxia, the activity of the mitochondrial enzyme aconitase is strongly reduced in the FRDA flies. This study reports that DFP and IDE improve the life span and motor ability of frataxin-depleted flies. We show that DFP eliminates the excess of labile iron in the mitochondria and thus prevents the toxicity induced by iron accumulation. IDE treatment rescues aconitase activity in hyperoxic conditions. These results validate the use of our Drosophila model of FRDA to screen for therapeutic molecules to treat this disease.  相似文献   

9.
Stressful conditions experienced by individuals during their early development have long-term consequences on various life-history traits such as survival until first reproduction. Oxidative stress has been shown to affect various fitness-related traits and to influence key evolutionary trade-offs but whether an individual''s ability to resist oxidative stress in early life affects its survival has rarely been tested. In the present study, we used four years of data obtained from a free-living great tit population (Parus major; n = 1658 offspring) to test whether pre-fledging resistance to oxidative stress, measured as erythrocyte resistance to oxidative stress and oxidative damage to lipids, predicted fledging success and local recruitment. Fledging success and local recruitment, both major correlates of survival, were primarily influenced by offspring body mass prior to fledging. We found that pre-fledging erythrocyte resistance to oxidative stress predicted fledging success, suggesting that individual resistance to oxidative stress is related to short-term survival. However, local recruitment was not influenced by pre-fledging erythrocyte resistance to oxidative stress or oxidative damage. Our results suggest that an individual ability to resist oxidative stress at the offspring stage predicts short-term survival but does not influence survival later in life.  相似文献   

10.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

11.

Background

Schistosomiasis is caused by helminth parasites of the genus Schistosoma. Berberine chloride (BER), an isoquinoline alkaloid, has been used in vivo for its antiparasitic, antioxidant and hepatoprotective properties. In this study, the protective effect of BER and praziquantel has been compared for the extent of schistosomiasis-induced oxidative stress in hepatic tissue of mice.

Results

S. mansoni was able to induce inflammation and injury to the liver, evidenced (i) by an increase in inflammatory cellular infiltrations, dilated sinusoids and vacuolated hepatocytes, (ii) by decreased levels of alanine and aspartate aminotransferases and increased levels of alkaline phosphatase, γ-glutamyl transferase in the liver homogenate, (iii) by increased production of nitric oxide and thiobarbituric acid reactive substances, and (iv) by lowered glutathione levels and decreased activities of catalase and superoxide dismutase, respectively. All these infection-induced parameters were significantly altered during BER treatment. In particular, berberine counteracted the S. mansoni-induced loss of glutathione and the activities of catalase and superoxide dismutase.

Conclusion

Based on these results, it is concluded that berberine could ameliorate pre-existing liver damage and oxidative stress conditions due to schistosomiasis.  相似文献   

12.
We have examined the addition of Escherichia coli to the diet at day 0 of adult life of females from two Oregon R Drosophila melanogaster strains, selected for different longevities: a short-life with an average adult life span of 10 days and a long-life standard R strain with an average adult life span of 50 days. The addition of bacteria to the diet significantly prolonged the fly longevity in both strains and affected the structure and histochemical reactivity of the fat body. The increased survival was characterized by great amount of glycogen accumulated in fat body cells from both strains. In aged control animals, fed with standard diet, lipid droplets were seen to be stored in fat body of short-lived, but not long-lived, flies. On the whole, our data indicate that exogenous bacteria are able to extend the survival of Drosophila females, and suggest that such a beneficial effect can be mediated, at least in part, by the fat body cells that likely play a role in modulating the accumulation and mobilization of reserve stores to ensure lifelong energy homeostasis.  相似文献   

13.
14.
15.
Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2.Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out.Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed.Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.  相似文献   

16.
The Free Radical Theory of Ageing (FRTA) predicts that oxidative stress, induced when levels of reactive oxygen species exceed the capacity of antioxidant defenses, causes ageing. Recently, it has also been argued that oxidative damage may mediate important life‐history trade‐offs. Here, we use inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age‐dependent reproductive effort, life span, ageing, oxidative damage, and total antioxidant capacity within and between the sexes. The FRTA predicts that oxidative damage should accumulate with age and negatively correlate with life span. We find that protein oxidation is greater in the shorter lived sex (females) and negatively genetically correlated with life span in both sexes. However, oxidative damage did not accumulate with age in either sex. Previously we have shown antagonistic pleiotropy between the genes for early‐life reproductive effort and ageing rate in both sexes, although this was stronger in females. In females, we find that elevated fecundity early in life is associated with greater protein oxidation later in life, which is in turn positively correlated with the rate of ageing. Our results provide mixed support for the FRTA but suggest that oxidative stress may mediate sex‐specific life‐history strategies in G. sigillatus.  相似文献   

17.
18.
Oxygen is toxic to aerobic animals because it is univalently reduced inside cells to oxygen free radicals. Studies dealing with the relationship between oxidative stress and aging in different vertebrate species and in caloric-restricted rodents are discussed in this review. Healthy tissues mainly produce reactive oxygen species (ROS) at mitochondria. These ROS can damage cellular lipids, proteins and, most importantly, DNA. Although antioxidants help to control this oxidative stress in cells in general, they do not decrease the rate of aging, because their concentrations are lower in long- than in short-lived animals and because increasing antioxidant levels does not increase vertebrate maximum longevity. However, long-lived homeothermic vertebrates consistently have lower rates of mitochondrial ROS production and lower levels of steady-state oxidative damage in their mitochondrial DNA than short-lived ones. Caloric-restricted rodents also show lower levels of these two key parameters than controls fed ad libitum. The decrease in mitochondrial ROS generation of the restricted animals has been recently localized at complex I and the mechanism involved is related to the degree of electronic reduction of the complex I ROS generator. Strikingly, the same site and mechanism have been found when comparing a long- with a short-lived animal species. It is suggested that a low rate of mitochondrial ROS generation extends lifespan both in long-lived and in caloric-restricted animals by determining the rate of oxidative attack and accumulation of somatic mutations in mitochondrial DNA.  相似文献   

19.
Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations.  相似文献   

20.
Many Caenorhabditis elegans mutants with dysfunctional mitochondrial electron transport chain are surprisingly long lived. Both short-lived (gas-1(fc21)) and long-lived (nuo-6(qm200)) mutants of mitochondrial complex I have been identified. However, it is not clear what are the pathways determining the difference in longevity. We show that even in a short-lived gas-1(fc21) mutant, many longevity assurance pathways, shown to be important for lifespan prolongation in long-lived mutants, are active. Beside similar dependence on alternative metabolic pathways, short-lived gas-1(fc21) mutants and long-lived nuo-6(qm200) mutants also activate hypoxia-inducible factor –1α (HIF-1α) stress pathway and mitochondrial unfolded protein response (UPRmt). The major difference that we detected between mutants of different longevity, is in the massive loss of complex I accompanied by upregulation of complex II levels, only in short-lived, gas-1(fc21) mutant. We show that high levels of complex II negatively regulate longevity in gas-1(fc21) mutant by decreasing the stability of complex I. Furthermore, our results demonstrate that increase in complex I stability, improves mitochondrial function and decreases mitochondrial stress, putting it inside a “window” of mitochondrial dysfunction that allows lifespan prolongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号