共查询到20条相似文献,搜索用时 0 毫秒
1.
T-2 toxin induces apoptosis in differentiated murine embryonic stem cells through reactive oxygen species-mediated mitochondrial pathway 总被引:2,自引:0,他引:2
Fang H Wu Y Guo J Rong J Ma L Zhao Z Zuo D Peng S 《Apoptosis : an international journal on programmed cell death》2012,17(8):895-907
T-2 toxin, a member of the trichothecene mycotoxin family produced by the Fusarium fungi, has been shown to exert a variety of toxic effects on multiple targets in vivo. However, the embryonic toxicity of T-2 toxin in vitro remains unclear. In the present study, two permanent cell lines, embryonic stem cells (ES cells D3) and fibroblast 3T3 cells, were used to evaluate T-2 toxin toxicity. Differentiated mouse ES cells were cultivated as embryoid bodies along with T-2 toxin at different concentrations (0.5, 1, and 2 ng/ml) for 24 h. The increases in cellular reactive oxygen species (ROS), lipid and DNA oxidative damage, and loss of mitochondrial transmembrane potential were observed at 1 and 2 ng/ml concentrations. Flow cytometry showed that T-2 toxin induced cell cycle arrest and apoptosis. Furthermore, T-2 toxin opened the mitochondrial permeability transition pore, caused the release of cytochrome c from mitochondria and induced the upregulation of p53, caspase-9, caspase-3 expression and increased the ratio of Bax/Bcl-2. However, T-2 toxin-induced oxidative damage and apoptosis in differentiated ES cells decreased significantly in the presence of the antioxidant Trolox. Taken together, these results demonstrate that T-2 toxin induces oxidative stress and apoptosis in differentiated murine ES cells, and ROS-mediated mitochondrial pathway plays an important role in T-2 toxin induced apoptosis. 相似文献
2.
Zhang DX Gutterman DD 《American journal of physiology. Heart and circulatory physiology》2007,292(5):H2023-H2031
Once thought of as toxic by-products of cellular metabolism, reactive oxygen species (ROS) have been implicated in a large variety of cell-signaling processes. Several enzymatic systems contribute to ROS production in vascular endothelial cells, including NA(D)PH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase, and the mitochondrial electron transport chain. The respiratory chain is the major source of ROS in most mammalian cells, but the role of mitochondria-derived ROS in vascular cell signaling has received little attention. A new paradigm has evolved in recent years postulating that, in addition to producing ATP, mitochondria also play a key role in cell signaling and regulate a variety of cellular functions. This review focuses on the emerging role of mitochondrial ROS as signaling molecules in vascular endothelial cells. Specifically, we discuss some recent findings that indicate that mitochondrial ROS regulate vascular endothelial function, focusing on major sites of ROS production in endothelial mitochondria, factors modulating mitochondrial ROS production, the physiological and clinical implications of endothelial mitochondrial ROS, and methodological considerations in the study of mitochondrial contribution to vascular ROS generation. 相似文献
3.
Shuying Shen Yi Zhang Rui Zhang Xingguo Gong 《Biochemical and biophysical research communications》2013
Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge. In the present study, we revealed that sarsasapogenin exhibited antitumor activity by inducing apoptosis in vitro as determined by Hoechst staining analysis and double staining of Annexin V-FITC/PI. In addition, cell cycle arrest in G2/M phase was observed in sarsasapogenin-treated HeLa cells. Moreover, the results revealed that perturbations in the mitochondrial membrane were associated with the deregulation of the Bax/Bcl-2 ratio which led to the upregulation of cytochrome c, followed by activation of caspases. Meanwhile, treatment of sarsasapogenin also activated Unfolded Protein Response (UPR) signaling pathways and these changes were accompanied by increased expression of CHOP. Salubrinal (Sal), a selective inhibitor of endoplasmic reticulum (ER) stress, partially abrogated the sarsasapogenin-related cell death. Furthermore, sarsasapogenin provoked the generation of reactive oxygen species, while the antioxidant N-acetyl cysteine (NAC) effectively blocked the activation of ER stress and apoptosis, suggesting that sarsasapogenin-induced reactive oxygen species is an early event that triggers ER stress mitochondrial apoptotic pathways. Taken together, the results demonstrate that sarsasapogenin exerts its antitumor activity through both reactive oxygen species (ROS)-mediate mitochondrial dysfunction and ER stress cell death. 相似文献
4.
大黄素提高HeLa细胞对三氧化二砷促凋亡敏感性的研究 总被引:2,自引:0,他引:2
活性氧(reactive oxygen species,ROS)在三氧化二砷(arsenic trioxide,As2O3)诱导肿瘤细胞凋亡中扮演重要角色。本研究用一种天然蒽醌类物质——大黄素(emodin)作为提高HeLa细胞ROS水平的手段,考察其对As2O3促凋亡敏感性的影响,并探究可能涉及的信号传导机制。结果显示大黄素10μmol/L提高ROS并增加了HeLa细胞在As2O32μmol/L作用下的凋亡率,对正常成纤维细胞却无影响。该联合作用可以促进HeLa细胞线粒体跨膜电位降低;抑制转录因子NF-κB激活。本研究提示:大黄素通过提高ROS介导凋亡信号传导的增强和生存信号传导的抑制,增加HeLa细胞对As2O3促凋亡的敏感性。 相似文献
5.
Han YM Shin DS Lee YJ Ismail IA Hong SH Han DC Kwon BM 《Bioorganic & medicinal chemistry letters》2011,21(2):747-751
2-Hydroxycinnamaldehyde (HCA) and curcumin have been reported to have antitumor effects against various human tumor cells in vitro and in vivo by generation of ROS. Aldehyde-free HCA analogs were synthesized based on the structure of curcumin, which we have called 2-hydroxycurcuminoids. The hydroxyl group of curcuminoids enhances the ability to generate ROS. 2-Hydroxycurcuminoid (HCC-7) strongly inhibited the growth of SW620 colon tumor cells with a GI50 value of 7 μM, while the parent compounds, HCA and curcumin, displayed GI50 values of 12 and 30 μM, respectively. HCC-7 was found to induce apoptosis through the reactive oxygen species-mitochondria pathway and cell cycle arrest at G2/M phase. 相似文献
6.
7.
Exposure to cigarette smoke increases apoptosis in the rat gastric mucosa through a reactive oxygen species-mediated and p53-independent pathway 总被引:5,自引:0,他引:5
Cigarette smoking is a major risk factor for gastric cancer and peptic ulcer. The aim of our study was to investigate the relationship between exposure to cigarette smoke and apoptosis in the rat gastric mucosa and the mechanism involved. Rats were exposed to different concentrations of cigarette smoke (0, 2, and 4%) once daily for a different number of 1 h periods (1, 3, 6, and 9 d). Apoptosis was identified by the terminal deoxy-transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) method and caspase-3 activity. The mucosal xanthine oxidase (XO) activity and p53 level were also measured. The results showed that exposure to cigarette smoke produced a time- and concentration-dependent increase in apoptosis in the rat gastric mucosa that was accompanied by an increase in XO activity. The increased apoptosis and XO activity could be detected after even a single exposure. In contrast, the level of p53 was elevated only in the later stage of cigarette smoke exposure. The apoptotic effect could be blocked by pretreatment with an XO inhibitor (allopurinol, 20 mg/kg intraperitoneally) or a hydroxyl free radical scavenger (DMSO, 0.2%, 1 ml/kg intravenously). However, neither of these treatments had any effect on the p53 level of the mucosa. In summary, we conclude that exposure to cigarette smoke can increase apoptosis in the rat gastric mucosa through a reactive oxygen species- (ROS) mediated and a p53-independent pathway. 相似文献
8.
Vascular endothelial growth factor (VEGF) mediates angiogenic signaling by activating tyrosine kinase receptors. Endothelial cells treated with VEGF are known to increase reactive oxygen species (ROS) production and activate the MAPK pathway. To identify the target proteins of the VEGF receptor, we treated human umbilical vein endothelial cells (HUVECs) with VEGF or H2O2, and identified and semiquantified tyrosine-phosphorylated proteins, combining 2D-gel electrophoresis, Western analysis using antibody against phospho-tyrosine, and mass spectrometry. We detected 95 proteins that were differentially phosphorylated; some were specifically phosphorylated by VEGF but not by H2O2. 2D-gel electrophoresis revealed that heterogeneous populations of the same protein responded differently to H2O2 and VEGF. Bioinformatic studies examining the nature of the differential phosphorylation in various subpopulations of proteins should provide new insights into VEGF- and H2O2-induced signaling pathways. 相似文献
9.
10.
Nys K Maes H Andrei G Snoeck R Garmyn M Agostinis P 《Free radical biology & medicine》2012,52(6):1111-1120
The naturally occurring skin hypoxia has emerged as a crucial host factor of the epidermal microenvironment. We wanted to systematically investigate how reduced oxygen availability of the epidermis modulates the response of keratinocytes and melanocytes to noxious ultraviolet B radiation (UVB). We report that the exposure of normal human keratinocytes (NHKs) or melanocytes (NHEMs) to mild hypoxia drastically impacts cell death responses following UVB irradiation. The hypoxic microenvironment favors survival and reduces apoptosis of UVB-irradiated NHEMs and their malignant counterparts (melanoma cells). In contrast, NHKs, but not the transformed keratinocytes, under hypoxic conditions display increased levels of reactive oxygen species (ROS) and are significantly sensitized to UVB-mediated apoptosis as compared to NHKs treated under normoxic conditions. Prolonged exposure of UVB-treated NHKs to hypoxia triggers a sustained and reactive oxygen species-dependent activation of the stress kinases p38(MAPK) and JNKs, which in turn, engage the activation of Noxa and Bim proapoptotic proteins. Combined silencing of Noxa and Bim significantly inhibits UVB-mediated apoptosis under hypoxic conditions, demonstrating that hypoxia results in an amplification of the intrinsic apoptotic pathway. Physiologically occurring skin hypoxia, by facilitating the specific removal of UVB-damaged keratinocytes, may represent a decisive host factor impeding important steps of the photocarcinogenesis process. 相似文献
11.
Qian Yong Jiang Binghua Flynn Daniel C. Leonard Stephen S. Wang Suiwei Zhang Zhuo Ye Jianping Chen Fei Wang Liying Shi Xianglin 《Molecular and cellular biochemistry》2001,222(1-2):199-204
While Cr (VI)containing compounds are well established carcinogens, the mechanisms of their action remain to be investigated. In this study we show that Cr (VI) causes increased tyrosine phosphorylation in human lung epithelial A549 cells in a timedependent manner. Nacetylcysteine (NAC), a general antioxidant, inhibited Cr (VI)induced tyrosine phosphorylation. Catalase, a scavenger of H2O2, sodium formate and aspirin, scavengers of hydroxyl radical (OH), also inhibited the increased tyrosine phosphorylation induced by Cr (VI). SOD, an inhibitor of superoxide radical (O2
–), caused less inhibition. ESR study shows that incubation of Cr (VI) with the A549 cells generates OH radical. The generation of radical was decreased by addition of catalase and sodium formate, while SOD did not have any inhibitory effect. Oxygen consumption measurements show that addition of f Cr (VI) to A549 cells resulted in enhanced molecular oxygen consumption. These results indicate that Cr (VI) can induce an increase in tyrosine phosphorylation. H2O2 and OH radicals generated during the process are responsible for the increased tyrosine phosphorylation induced by Cr (VI). 相似文献
12.
Varisa Pongrakhananon Ubonthip Nimmannit Sudjit Luanpitpong Yon Rojanasakul Pithi Chanvorachote 《Apoptosis : an international journal on programmed cell death》2010,15(5):574-585
Anoikis, an apoptosis triggered by loss of cell anchorage, has been shown to be a principal mechanism of inhibition of tumor
metastasis. Recently, anti-apoptotic Bcl-2 and Cav-1 proteins have been demonstrated to be highly associated with tumor metastasis
and apoptosis resistance. Curcumin, a major active component of turmeric, Curcuma longa, has been shown to inhibit neoplastic evolution and tumor progression; however, the underlying mechanisms are unclear. In
this study, we investigated the effect of curcumin on cell anoikis as a possible mechanism of anti-tumorigenic action of curcumin,
and evaluated the potential role of Bcl-2 and Cav-1 in this process. Our results showed that ectopic expression of either
Bcl-2 or Cav-1 induced anoikis resistance of lung carcinoma H460 cells. Curcumin downregulated Bcl-2 protein during anoikis
and sensitized the cells to detachment-induced apoptosis, whereas it had no significant effect on Cav-1 protein expression.
Bcl-2 down-regulation as well as anoikis enhancement by curcumin were inhibited by superoxide anion scavenger, Mn(III)tetrakis(4-benzoic
acid) porphyrin chloride, but were unaffected by other ROS scavengers including catalase and deferoxamine, suggesting that
superoxide anion is a key player in the downregulation of Bcl-2 by curcumin. Furthermore, we provided evidence that curcumin
decreased Bcl-2 level through ubiquitin-proteasomal degradation which sensitized cells to detachment-induced apoptosis. These
findings indicate a novel pathway for curcumin regulation of Bcl-2 and provide a key mechanism of anoikis regulation that
may be exploited for metastatic cancer treatment. 相似文献
13.
14.
15.
Ji Su Kim Keun Jae Ahn Jeong-Ah Kim Hye Mi Kim Jong Doo Lee Jae Myun Lee Se Jong Kim Jeon Han Park 《Journal of bioenergetics and biomembranes》2008,40(6):607-618
Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed.
3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism
of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of
HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive
oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-l-cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death.
3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria
to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation
due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells. 相似文献
16.
Sim S Yong TS Park SJ Im KI Kong Y Ryu JS Min DY Shin MH 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(7):4279-4288
The extracellular tissue penetrating protozoan parasite Entamoeba histolytica has been known to induce host cell apoptosis. However, the intracellular signaling mechanism used by the parasite to trigger apoptosis is poorly understood. In this study, we investigated the roles of reactive oxygen species (ROS), and of MAPKs in the Entamoeba-induced apoptosis of human neutrophils. The neutrophils incubated with live trophozoites of E. histolytica revealed a marked increase of receptor shedding of CD16 as well as phosphatidylserine (PS) externalization on the cell surface. The Entamoeba-induced apoptosis was effectively blocked by pretreatment of cells with diphenyleneiodonium chloride (DPI), a flavoprotein inhibitor of NADPH oxidase. A large amount of intracellular ROS was detected after exposure to viable trophozoites, and the treatment with DPI strongly inhibited the Entamoeba-induced ROS generation. However, a mitochondrial inhibitor rotenone did not attenuate the Entamoeba-induced ROS generation and apoptosis. Although E. histolytica strongly induced activation of ERK1/2 and p38 MAPK in neutrophils, the activation of ERK1/2 was closely associated with ROS-mediated apoptosis. Pretreatment of neutrophils with MEK1 inhibitor PD98059, but not p38 MAPK inhibitor SB202190, prevented Entamoeba-induced apoptosis. Moreover, DPI almost completely inhibited Entamoeba-induced phosphorylation of ERK1/2, but not phosphorylation of p38 MAPK. These results strongly suggest that NADPH oxidase-derived ROS-mediated activation of ERK1/2 is required for the Entamoeba-induced neutrophil apoptosis. 相似文献
17.
Anne-Sophie Pierre Mélaine Minville-Walz Cécile Fèvre Aziz HichamiJoseph Gresti Laurent PichonSandrine Bellenger Jérôme BellengerFrançois Ghiringhelli Michel Narce Mickaël Rialland 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(4):759-768
Dietary conjugated linoleic acids (CLA) are fatty acid isomers with anticancer activities produced naturally in ruminants or from vegetable oil processing. The anticancer effects of CLA differ upon the cancer origin and the CLA isomers. In this study, we carried out to precise the effects of CLA isomers, c9,t11 and t10,c12 CLA, on mechanisms of cell death induction in colon cancer cells. We first showed that only t10,c12 CLA treatment (25 and 50 μM) for 72 h triggered apoptosis in colon cancer cells without affecting viability of normal-derived colon epithelial cells. Exposure of colon cancer cells to t10,c12 CLA activated ER stress characterized by induction of eIF2α phoshorylation, splicing of Xbp1 mRNA and CHOP expression. Furthermore, we evidenced that inhibition of CHOP expression and JNK signaling decreased t10,c12 CLA-mediated cancer cell death. Finally, we showed that CHOP induction by t10,c12 CLA was dependent on ROS production and that the anti-oxidant N-acetyl-cysteine reduced CHOP induction-dependent cell death. These results highlight that t10,c12 CLA exerts its cytotoxic effect through ROS generation and a subsequent ER stress-dependent apoptosis in colon cancer cells. 相似文献
18.
Thioridazine has been known as an antipsychotic agent, but it also has anticancer activity. However, the effect of thioridazine on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitization has not yet been studied. Here, we investigated the ability of thioridazine to sensitize TRAIL-mediated apoptosis. Combined treatment with thioridazine and TRAIL markedly induced apoptosis in various human carcinoma cells, including renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MDA-MB231), and glioma (U251MG) cells, but not in normal mouse kidney cells (TMCK-1) and human normal mesangial cells. We found that thioridazine downregulated c-FLIP(L) and Mcl-1 expression at the post-translational level via an increase in proteasome activity. The overexpression of c-FLIP(L) and Mcl-1 overcame thioridazine plus TRAIL-induced apoptosis. We further observed that thioridazine inhibited the Akt signaling pathway. In contrast, although other phosphatidylinositol-3-kinase/Akt inhibitors ( and wortmannin) sensitized TRAIL-mediated apoptosis, c-FLIP(L) and Mcl-1 expressions were not altered. Furthermore, thioridazine increased the production of reactive oxygen species (ROS) in Caki cells, and ROS scavengers (N-acetylcysteine, glutathione ethyl ester, and trolox) inhibited thioridazine plus TRAIL-induced apoptosis, as well as Akt inhibition and the downregulation of c-FLIP(L) and Mcl-1. Collectively, our study demonstrates that thioridazine enhances TRAIL-mediated apoptosis via the ROS-mediated inhibition of Akt signaling and the downregulation of c-FLIP(L) and Mcl-1 at the post-translational level. LY294002相似文献
19.
20.
Kuramochi Y Cote GM Guo X Lebrasseur NK Cui L Liao R Sawyer DB 《The Journal of biological chemistry》2004,279(49):51141-51147
Neuregulin (NRG)-1beta has a prosurvival effect on cardiac myocytes via the phosphatidylinositol-3-kinase/Akt pathway, but the physiological regulators of this system in the intact heart are unknown. In this study, we tested the hypothesis that reactive oxygen species regulate NRG/erbB signaling. We used isolated adult rat ventricular myocytes (ARVMs) or cardiac microvascular endothelial cells (CMECs) in monoculture, or together in coculture. H2O2 induced NRG-1beta release from CMECs in a concentration-dependent manner, and conditioned medium from H2O2-treated CMEC activated ARVM erbB4. NRG-1beta release occurred via proteolytic cleavage of 115-kDa transmembrane NRG-1beta and was inhibited by the metalloproteinase inhibitor 1,10-phenanthroline. In myocyte monoculture, H2O2 induced erbB4-dependent, but NRG-independent, activation of Akt. To elucidate the bioactivity of CMEC-derived NRG-1beta on ARVMs, we examined H2O2-induced myocyte apoptosis in co-culture using an antibody to NRG-1beta. The percentages of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were significantly higher in the anti-NRG-1beta group than in the control group. The change in apoptosis induced by anti-NRG-1beta in co-culture was similar in magnitude to the protection of myocytes by addition of recombinant NRG-1beta to ARVM monocultures. Activation of NRG/erbB paracrine signaling was also seen in the intact heart subjected to oxidative stress by ischemia-reperfusion injury. Isolated perfused mouse hearts subjected to 15 min of ischemia, followed by 30 min of reperfusion, showed complete proteolytic cleavage of 115-kDa NRG-1beta, with concomitant erbB4 phosphorylation. These results demonstrate that reactive oxygen species activate NRG-1beta/erbB4 paracrine signaling in the heart and suggest that this system is involved in cardiac adaptation to oxidative stress. 相似文献