首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronegative LDL (LDL(-)) and free fatty acids (FFAs) are circulating risk factors for cardiovascular diseases (CVDs) and have been associated with inflammation. Interleukin-1 beta (IL-1β) represents a key cytokine in the development of CVD; however, the initial trigger of IL-1β in CVD remains to be explored. In this study, we investigated the combined effects of LDL(-) from the plasma of ST-segment elevation myocardial infarction (STEMI) patients or diet-induced hypercholesterolemic rabbits and bovine serum albumin bound palmitic acid (PA-BSA) on IL-1β production in macrophages. Macrophages derived from THP-1 cells or human peripheral blood mononuclear cells were independently treated with LDL(-), PA-BSA or cotreated with LDL(-) and PA-BSA. The results showed that nLDL and/or PA-BSA had no effect on IL-1β, and LDL(-) slightly increased IL-1β; however, cotreatment with LDL(-) and PA-BSA resulted in abundant secretion of IL-1β in macrophages. Rabbit LDL(-) induced the elevation of cellular pro-IL-1β and p-Iκ-Bα, but PA-BSA had no effect on pro-IL-1β or p-Iκ-Bα. In potassium-free buffer, LDL(-)-induced IL-1β reached a level similar to that induced by cotreatment with LDL(-) and PA-BSA. Moreover, LDL(-) and PA-BSA-induced IL-1β was inhibited in lectin-type oxidized LDL receptor-1 (LOX-1) knockdown cells and by blockers of voltage-gated potassium (Kv) channels. LDL(-) from diet-induced hypercholesterolemic rabbit had a similar effect as STEMI LDL(-) on IL-1β in macrophages. These results show that PA-BSA cooperates with LDL(-) to trigger IL-1β production in macrophages via a mechanism involving the LOX-1 and Kv channel pathways, which may play crucial roles in the regulation of inflammation in CVD.  相似文献   

2.
Shift work is unavoidable in modern societies, but at the same time disrupts biological rhythms and contributes to social distress and disturbance of sleep, health and well-being of shift workers. Shift work has been associated with some chronic diseases in which a chronic inflammatory condition may play a role. However, few studies investigating the association of cytokine and other inflammation markers with shift workers have been published in recent years. In this study we evaluated the effects of permanent night work on the production of tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6 and melatonin in saliva. Another aim was to demonstrate the benefit of the use of salivary cytokines for studies in chronobiology, since it is an easy and non-invasive method that allows for sampling at several times. Thirty-eight healthy male workers, being 21 day workers and 17 night workers, agreed to participate in this study. Sleep was evaluated by actigraphy and activity protocols. Saliva was collected during three workdays approximately at the middle of the work shift and at bed and wake times of the main sleep episode. Saliva samples were then analyzed by enzyme-linked immunosorbent assay to measure TNF, IL-1β, IL-6 and melatonin levels, and the results were submitted to non-parametric statistical analysis. The use of saliva instead of blood allowed for a greater number of samples from the same subjects, allowing identifying alterations in the daily production patterns of salivary cytokines TNF, IL-1β and IL-6 that probably are linked to night work. Salivary TNF and IL-1β levels were similar for day and night workers, with higher daily production after awakening, in the morning hours for day workers and in the afternoon for night workers. Both groups presented a significant daily variation pattern of these two cytokines. Day and night workers produced similar amounts of salivary IL-6. Nevertheless, the daily variation pattern observed among day workers, with a peak after awakening, was absent among night workers. Thus, in our study, night workers showed partially adjusted daily variation patterns for salivary TNF and IL-1β, not seen for salivary IL-6. Results for salivary IL-6 could be better explained as a consequence of circadian disruption due to permanent night work. Our results suggest that the whole circadian system, including clocks and pineal gland, is involved in regulating cytokine profile in shift workers and that a coordinated production of these cytokines, important for an adequate inflammatory response, could be disturbed by shift work. The distinct effects that shift work may have on different cytokines could give some cues about the mechanisms involved in this association.  相似文献   

3.
4.
It is currently believed that the protein folding rate is related to the protein structures and its amino acid sequence. However, few studies have been done on the problem that whether the protein folding rate is influenced by its corresponding mRNA sequence. In this paper, we analyzed the possible relationship between the protein folding rates and the corresponding mRNA sequences. The content of guanine and cytosine (GC content) of palindromes in protein coding sequence was introduced as a new parameter and added in the Gromiha's model of predicting protein folding rates to inspect its effect in protein folding process. The multiple linear regression analysis and jack-knife test show that the new parameter is significant. The linear correlation coefficient between the experimental and the predicted values of the protein folding rates increased significantly from 0.96 to 0.99, and the population variance decreased from 0.50 to 0.24 compared with Gromiha's results. The results show that the GC content of palindromes in the corresponding protein coding sequence really influences the protein folding rate. Further analysis indicates that this kind of effect mostly comes from the synonymous codon usage and from the information of palindrome structure itself, but not from the translation information from codons to amino acids.  相似文献   

5.
Interleukin (IL)-1β is one of the important proinflammatory cytokines in neural as well as immune systems, and plays a pivotal role in the neuroinflammation. We previously demonstrated that cerebellar IL-1β is involved in kainate-induced ataxia, i.e., IL-1β was activated in the cerebellum with systemic administration of kainate, and its type I receptor (IL-1R) was expressed at a soma of cerebellar Purkinje cells. In this study, we examined the effect of IL-1β on cerebellar Purkinje cell function by recording extracellular neuronal activities in anesthetized mice. Systemic administration of kainate increased the firing rates of cerebellar Purkinje cells in normal mice but showed little effect in IL-1R-knockout (IL-1R-KO) mice. Moreover, microiontophoretic administration of IL-1β to cerebellar Purkinje cells increased the firing rates promptly in response to IL-1β. The present results demonstrate that IL-1 system exerts a direct modulatory effect on cerebellar Purkinje cells.  相似文献   

6.
Chronic treatment of rats with the 2-adrenergic agonists clenbuterol and fenoterol over 16–19 d raised energy intake, expenditure, and body weight gain but did not affect fat or energy deposition, and body protein gain was increased by 50 and 18%, respectively. Both drugs increased the protein content and mitochondrial GDP-binding capacity of brown adipose tissue. Clenbuterol did not affect plasma insulin, growth hormone, or triiodothyronine levels, although insulin levels were reduced by fenoterol. Both drugs caused hypertrophy of skeletal muscle (gastrocnemius), and muscle protein synthesis in vivo (fractional rate) was elevated by 34 and 26% in clenbuterol and fenoteroltreated rats, respectively.  相似文献   

7.
Interferon-induced transmembrane proteins IFITM1 and IFITM3 (IFITM1/3) play a role in both RNA viral restriction and in human cancer progression. Using immunohistochemical staining of FFPE tissue, we identified subgroups of cervical cancer patients where IFITM1/3 protein expression is inversely related to metastasis. Guide RNA-CAS9 methods were used to develop an isogenic IFITM1/IFITM3 double null cervical cancer model in order to define dominant pathways triggered by presence or absence of IFITM1/3 signalling. A pulse SILAC methodology identified IRF1, HLA-B, and ISG15 as the most dominating IFNγ inducible proteins whose synthesis was attenuated in the IFITM1/IFITM3 double-null cells. Conversely, SWATH-IP mass spectrometry of ectopically expressed SBP-tagged IFITM1 identified ISG15 and HLA-B as dominant co-associated proteins. ISG15ylation was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. Proximity ligation assays indicated that HLA-B can interact with IFITM1/3 proteins in parental SiHa cells. Cell surface expression of HLA-B was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. SWATH-MS proteomic screens in cells treated with IFITM1-targeted siRNA cells resulted in the attenuation of an interferon regulated protein subpopulation including MHC Class I molecules as well as IFITM3, STAT1, B2M, and ISG15. These data have implications for the function of IFITM1/3 in mediating IFNγ stimulated protein synthesis including ISG15ylation and MHC Class I production in cancer cells. The data together suggest that pro-metastatic growth associated with IFITM1/3 negative cervical cancers relates to attenuated expression of MHC Class I molecules that would support tumor immune escape.  相似文献   

8.
The MAPK/ERK pathway is involved in IL-1β-induced cyclooxygenase (COX-2) expression and prostaglandin E2 (PGE2) production; two factors that play important roles in OA pathogenesis. In the present study, we find that IL-1β induced COX-2 expression and PGE2 production in human chondrocytes via a process that required the activation of the MAPK/ERK pathway. To evaluate the respective roles and relationship of ERK1 and ERK2 on IL-1β induced COX-2 expression and PGE2 production, small interfering RNA was used to knockdown ERK1, ERK2 or both in human chondrocytes. COX-2 expression and PGE2 production were significantly suppressed to a similar degree by the silencing of ERK1 or ERK2 alone. Moreover, the combined knockdown displayed a synergistic effect. Simultaneously, Western blotting indicated that the knockdown of ERK1 or ERK2 down regulated phospho-ERK1 and ERK1 or phospho-ERK2 and ERK2 levels, respectively. No significant compensatory mechanism through the upregulation of the other phospho-ERK and ERK isoform was observed. The combined silencing suppressed both phospho-ERK1/2 and ERK1/2. In conclusion, each ERK isoform similarly influenced IL-1β-mediated COX-2 expression and PGE2 production in human chondrocytes, and ERK1 and ERK2 displayed synergistic effects. Although, inhibition of both ERK1 and ERK2 would be a more effective, each ERK isoform may sufficiently regulate these effects in human chondrocytes. ERK1 or ERK2 may be potential therapeutic target for the inflammatory process of OA.  相似文献   

9.
The conversion of 2-phenylbenzimidazole using o-phenylenediamine and benzaldehyde can be improved significantly under β-cyclodextrin (β-CD). The density functional theory (DFT) method was applied to study the whole process. According to energy parameters (binding energy, deformation energy) and structural deformation, entry models and the reaction process can be pinpointed, with o-phenylenediamine embedding β-CD from a wide rim, and then benzaldehyde passing into the inclusion from the narrow rim. Subsequently, natural bonding orbital (NBO), Mulliken charge, frontier orbital, FuKui function and nuclear magnetic resonance (NMR) methods were employed to reveal the mechanism of electron transfer. The results illustrate that β-CD plays a catalytic role in synthesis reaction mechanism on the secondary side, improving the reactivity and selectivity of the process.
Graphical Abstract Density functional theory study of the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine
  相似文献   

10.
Periodontitis is an inflammatory disease of the supporting tissues of the teeth. Interleukin (IL)-13 is a multifunctional T-helper type2 (Th2) cytokine that can diminish inflammatory responses. I investigated using ELISA the effects of IL-13 on transforming growth factor-beta (TGF-β) and matrix metalloproteinase-1 (MMP-1). MMP-1 was detected using immunohistochemistry. Gingival fibroblasts were stimulated with IL-13 or together with tumor necrosis factor-α (TNF-α). I found that macrophage-like cells, fibroblast-like cells, vascular endothelial cells and gingival epithelial cells were stained more intensely for MMP-1 and were observed more frequently in the periodontitis affected group than in the control group. The cultured gingival fibroblasts with IL-13 produced more TGF-β than unstimulated cells. After stimulation with additional TNF-α, MMP-1 production was diminished. IL-13 may play a role in regulating collagen homeostasis in gingival fibroblasts. IL-13 induces both up-regulation of TGF-β, a cytokine known to stimulate production of collagen, and down-regulation of collagen-destroying MMP-1 production. This effect may be strong during periodontitis when Th2 cells assist T cells.  相似文献   

11.
12.
The cytokine interleukin-1β (IL-1β) is a key mediator of the inflammatory response. Essential for the host-response and resistance to pathogens, it also exacerbates damage during chronic disease and acute tissue injury. It is not surprising therefore that there is a huge level of interest in how this protein is produced and exported from cells. However, the mechanism of IL-1β release has proven to be elusive. It does not follow the conventional ER-Golgi route of secretion. A literature full of disparate observations arising from numerous experimental systems, has contributed to a complicated mix of diverse proposals. Here we summarise these observations and propose that secretion of IL-1β occurs on a continuum, dependent upon stimulus strength and the extracellular IL-1β requirement.  相似文献   

13.
《Cytokine》2015,71(2):81-86
AimAstragalus membranaceus is a Chinese medicinal herb and has been shown to improve hapten-induced experimental colitis. One of its major components is polysaccharides. We investigated the effect of Astragalus polysaccharides (APS) on expression of TNF-α, IL-1β and NFATc4 in a rat model of experimental colitis.MethodsThe experimental colitis model was induced by TNBS. Forty five rats were divided into five groups (n = 9): Normal control group, receiving ethanol vehicle with no TNBS during induction and IP saline injection during treatment; TNBS colitis model group (TNBS + IP saline), receiving only IP saline vehicle treatment; APS low dose group (TNBS + L-APS), receiving APS 100 mg/kg; APS high dose group (TNBS + H-APS), receiving APS 200 mg/kg; and positive control group (TNBS + Dexm), receiving dexamethasone 0.3 mg/kg. The clinical features, macroscopic and microscopic scores were assessed. The expressions of TNF-α, IL-1β and NFATc4 were measured by real-time PCR and ELISA assays.ResultsCompared to normal control rats, TNBS + IP saline had significant weight loss, increased macroscopic and microscopic scores, higher disease activity index (DAI) up-regulation of TNF-α, IL-1β and NFATc4 mRNA expression and up-regulation of TNF-α and IL-1β protein expression. Compared to TNBS + IP saline, treatment with APS or dexamethasone significantly reduced DAI, partially but significantly prevented TNBS colitis-induced weight loss and improved both macroscopic and microscopic scores; high dose APS or dexamethasone significantly down-regulated TNF-α and IL-1β expressions (both mRNA and protein) and up-regulated NFATc4 mRNA and protein expression. The effect of high dose APS and dexamethasone is comparable.ConclusionsAPS significantly improved experimental TNBS-induced colitis in rats through regulation of TNF-α, IL-1β and NFATc4 expression.  相似文献   

14.
15.
Aβ(1–42) peptide, found as aggregated species in Alzheimer’s disease brain, is linked to the onset of dementia. We detail results of 31P and 2H solid-state NMR studies of model membranes with Aβ peptides and the effect of metal ions (Cu2+ and Zn2+), which are found concentrated in amyloid plaques. The effects on the lipid bilayer and the peptide structure are different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induce formation of smaller vesicles, but not when Aβ(1–42) is associated with the bilayer membrane. Aβ(25–35), a fragment from the C-terminal end of Aβ(1–42), which lacks the metal coordinating sites found in the full length peptide, is neurotoxic to cortical cortex cell cultures. Addition of metal ions has little effect on membrane bilayers with Aβ(25–35) peptides. 31P magic angle spinning NMR data show that Aβ(1–42) and Aβ(1–42)-Cu2+ complexes interact at the surface of anionic phospholipid membranes. Incorporated peptides, however, appear to disrupt the membrane more severely than associated peptides. Solid-state 13C NMR was used to compare structural changes of Aβ(1–42) to those of Aβ(25–35) in model membrane systems of anionic phospholipids and cholesterol. The Aβ peptides appeared to have an increase in β-strand structure at the C-terminus when added to phospholipid liposomes. The inclusion of Cu2+ also influenced the observed chemical shift of residues from the C-terminal half, providing structural clues for the lipid-associated Aβ/metal complex. The results point to the complex pathway(s) for toxicity of the full-length peptide. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

16.
Summary The effects of-irradiation and changes in the macromolecular structure on the water proton resonance spectra observed in frozen and liquid solutions have been compared for the DNA and polynucleotide solutions, using H2O or mixed H2O/D2O solvents. The results indicate that in order to obtain information concerning the role of hydration water in mediating the overall radiation damage, the NMR studies must be performed in the frozen state.Member of the Euratom biology division  相似文献   

17.
Amyloid beta (Aβ) is a major causative agent of Alzheimer disease (AD). This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of β-secretase and γ-secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrPc) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial AD and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between AD and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.Key words: Alzheimer disease, amyloid β, apoptosis, 37 kDa/67 kDa laminin receptor, prion proteinsAlzheimer disease (AD), primarily defined by psychiatrist Alois Alzheimer in 1906, is a neurodegenerative disorder and currently exhibits a prevalence that “doubles approximately every five years from 0.5% at the common age of onset-65 years old.”1 This disease is the most common form of dementia afflicting the elderly and at present affects in excess of 37 million people globally2 and it is predicted that 100 million people will be living with the disease by 2050.3AD has received mounting scientific interest and has stimulated tireless research endeavours not only due to the complex mechanism by which it is caused; the multitude of contributing factors and contradictions which have arisen between hypotheses and acquired results, but also due to the rise in life expectancies4 owing to the advent of modern medicine, which has socio-economic implications particularly in terms of strain placed upon national health systems.  相似文献   

18.
This study aims at gaining insight into the specificity and molecular mechanism of monoglyceride–protein interactions. We used β-lactoglobulin (β-LG) and lysozyme as model proteins and both monostearoylglycerol and monopalmitoylglycerol as defined gel phase monoglycerides. The monoglycerides were used in different combinations with the two negatively charged amphiphiles dicetylphosphate and distearylphosphate. The interactions were characterized using the monolayer technique, isothermal titration calorimetry, 2H-nuclear magnetic resonance (NMR) using deuterium labelled monoglycerides and freeze fracture electron microscopy (EM). Our results show that lysozyme inserts efficiently into all monolayers tested, including pure monoglyceride layers. The insertion of β-LG depends on the lipid composition of the monolayer and is promoted when the acylchains of the negatively charged amphiphile are shorter than that of the monoglyceride. The binding parameters found for the interaction of β-LG and lysozyme with monoglyceride bilayers were generally similar. Moreover, in all cases a large exothermic binding enthalpy was observed which was found to depend on the nature of the monoglycerides but not of the proteins. 2H-NMR and freeze fracture EM showed that this large enthalpy results from a protein mediated catalysis of the monoglyceride Lβ to coagel phase transition. The mechanism of this phase transition consists of two steps, an initial protein mediated vesicle aggregation step which is followed by stacking and probably fusion of the bilayers.  相似文献   

19.
Yao XQ  Li XC  Zhang XX  Yin YY  Liu B  Luo DJ  Wang Q  Wang JZ  Liu GP 《FEBS letters》2012,586(16):2522-2528
Protein phosphatase-2A (PP2A) activity is significantly suppressed in Alzheimer's disease. We have reported that glycogen synthase kinase-3β (GSK-3β) inhibits PP2A via upregulating the phosphorylation of PP2A catalytic subunit (PP2A(C)). Here we studied the effects of GSK-3β on the inhibitory demethylation of PP2A at leucine-309 (dmL309-PP2A(C)). We found that GSK-3β regulates dmL309-PP2A(C) level by regulating PME-1 and PPMT1. Knockdown of PME-1 or PPMT1 eliminated the effects of GSK-3β on PP2A(C). GSK-3 could negatively regulate PP2A regulatory subunit protein level. We conclude that GSK-3β can inhibit PP2A by increasing the inhibitory L309-demethylation involving upregulation of PME-1 and inhibition of PPMT1.  相似文献   

20.
The plasma membrane serves as a barrier to limit the exit and entry of components into and out of the cell, offering protection from the external environment. Communication between the cell and the external environment is mediated by multiple signaling pathways. While the plasma membrane was historically viewed as a lipid bilayer with freely diffusing proteins, the last decade has shown that the lipids and proteins in the plasma membrane are organized in a non-random manner, and that this organization can direct and modify various signaling pathways in the cell. In this review, we qualitatively discuss the ways that membrane domains can affect cell signaling. We then focus on how membrane domains can affect a specific signaling pathway – the G protein–phospholipase Cβ pathway and show how membrane domains can play an active role in directing or redirecting G protein signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号