首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Genomics》2022,114(4):110391
ObjectiveTo investigate the role and mechanism of microRNAs (miRNAs) in fibrotic processes involved in the pathology of systemic sclerosis (SSc).MethodsR language and bioinformatics methods were used to identify differential miRNAs and mRNAs and analyze their biological functions. Transfection experiments were performed to evaluate the function and regulatory mechanism of miR-27a-3p in vitro. Levels of fibrosis-related genes, SPP1 and cell proliferation were assessed.ResultsMiR-27a-3p is reduced both in SSc lung and skin tissues. Overexpression of miR-27a-3p significantly inhibited fibrosis-related genes expression and protein abundance and cell proliferation, whereas inhibition of miR-27a-3p significantly enhanced these phenomena. Moreover, miR-27a-3p exerts its anti-fibrosis effect by negatively regulating SPP1 and ERK signal, more prominent in fibroblasts.ConclusionsOur findings show that miR-27a-3p regulates a common mechanism in the process of SSc skin and lung fibrosis. MiR-27a-3p/SPP1/ERK1/2 axis may be an important target for delaying the progression of SSc fibrosis.  相似文献   

3.
4.

Background

Antiflammin-1 (AF-1), a derivative of uteroglobin (UG), is a synthetic nonapeptide with diverse biological functions. In the present study, we investigated whether AF-1 has a protective effect against bleomycin-induced pulmonary fibrosis.

Methods

C57BL/6 mice were injected with bleomycin intratracheally to create an animal model of bleomycin-induced pulmonary fibrosis. On Day 7 and Day 28, we examined the anti-inflammatory effect and antifibrotic effect, respectively, of AF-1 on the bleomycin-treated mice. The effects of AF-1 on the transforming growth factor-beta 1 (TGF-β1)-induced proliferation of murine lung fibroblasts (NIH3T3) were examined by a bromodeoxycytidine (BrdU) incorporation assay and cell cycle analysis.

Results

Severe lung inflammation and fibrosis were observed in the bleomycin-treated mice on Day 7 and Day 28, respectively. Administration of AF-1 significantly reduced the number of neutrophils in the bronchoalveolar lavage fluid (BALF) and the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the lung homogenates on Day 7. Histological examination revealed that AF-1 markedly reduced the number of infiltrating cells on Day 7 and attenuated the collagen deposition and destruction of lung architecture on Day 28. The hydroxyproline (HYP) content was significantly decreased in the AF-1-treated mice. In vitro, AF-1 inhibited the TGF-β1-induced proliferation of NIH3T3 cells, which was mediated by the UG receptor.

Conclusions

AF-1 has anti-inflammatory and antifibrotic actions in bleomycin-induced lung injury. We propose that the antifibrotic effect of AF-1 might be related to its suppression of fibroblast growth in bleomycin-treated lungs and that AF-1 has potential as a new therapeutic tool for pulmonary fibrosis.  相似文献   

5.
The phenotypic transformation of hepatic myofibroblasts (MFs) is involved in the whole process of the progression and regression of liver fibrosis. Notch signaling has been demonstrated to modulate the fibrosis. In this study, we found that Notch signaling in MFs was overactivated and suppressed with the progression and regression of hepatic fibrosis respectively, by detecting Notch signaling readouts in MFs. Moreover, we inactivated Notch signaling specifically in MFs with Sm22αCreER-RBPjflox/flox mice (RBPjMF-KO), and identified that MFs-specific down-regulation of Notch signaling significantly alleviated CCl4-induced liver fibrosis during the progression and regression. During the progression of liver fibrosis, MFs-specific blockade of Notch signaling inhibited the activation of HSCs to MFs and increases the expression of MMPs to reduce the deposition of ECM. During the regression of fibrosis, blocking Notch signaling in MFs increased the expression of HGF to promote proliferation in hepatocytes and up-regulated the expression of pro-apoptotic factors, Ngfr and Septin4, to induce apoptosis of MFs, thereby accelerating the reversal of fibrosis. Collectively, the MFs-specific disruption of Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression, which suggests a promising therapeutic strategy for liver fibrosis.  相似文献   

6.
Transforming growth factor-beta (TGF-beta) signaling plays an important regulatory role during lung fibrogenesis. Smad3 was identified in the pathway for transducing TGF-beta signals from the cell membrane to the nucleus. Using mice without Smad3 gene expression, we investigated whether Smad3 could regulate bleomycin-induced pulmonary fibrosis in vivo. Mice deficient in Smad3 demonstrated suppressed type I procollagen mRNA expression and reduced hydroxyproline content in the lungs compared with wild-type mice treated with bleomycin. Furthermore, loss of Smad3 greatly attenuated morphological fibrotic responses to bleomycin in the mouse lungs, suggesting that Smad3 is implicated in the pathogenesis of pulmonary fibrosis. These results show that Smad3 contributes to bleomycin-induced lung injury and that Smad3 may serve as a novel target for potential therapeutic treatment of lung fibrosis.  相似文献   

7.
C-type natriuretic peptide (CNP) has been shown to play an important role in the regulation of vascular tone and remodeling. However, the physiological role of CNP in the lung remains unknown. Accordingly, we investigated whether CNP infusion attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. After intratracheal injection of BLM or saline, mice were randomized to receive continuous infusion of CNP or vehicle for 14 days. CNP infusion significantly reduced the total number of cells and the numbers of macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid. Interestingly, CNP markedly reduced bronchoalveolar lavage fluid IL-1beta levels. Immunohistochemical analysis demonstrated that CNP significantly inhibited infiltration of macrophages into the alveolar and interstitial regions. CNP infusion significantly attenuated BLM-induced pulmonary fibrosis, as indicated by significant decreases in Ashcroft score and lung hydroxyproline content. CNP markedly decreased the number of Ki-67-positive cells in fibrotic lesions of the lung, suggesting antiproliferative effects of CNP on pulmonary fibrosis. Kaplan-Meier survival curves demonstrated that BLM mice treated with CNP had a significantly higher survival rate than those given vehicle. These results suggest that continuous infusion of CNP attenuates BLM-induced pulmonary fibrosis and improves survival in BLM mice, at least in part by inhibition of pulmonary inflammation and cell proliferation.  相似文献   

8.
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4. Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4-induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4-induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.  相似文献   

9.
Aims Systemic sclerosis (SSc) is characterized by vasculopathy and organ fibrosis. Although microvascular alterations are very well characterized, structural and functional abnormalities of large vessels are not well defined. Therefore, we evaluated the effect of simvastatin administration on aortic and small renal arteries thickening, and on myofibroblasts differentiation in a murine model of SSc. Methods and results SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl, 100?μl) for 6 weeks. Mice (n?=?23) were randomized to receive: HOCl (n?=?10); HOCl plus simvastatin (40?mg/kg; n?=?8); or vehicle (n?=?5). Simvastatin administration started 30?min after HOCl injection, and up to week 6. Aortic and small renal arteries intima–media thickness was evaluated by histological analysis. Immunostaining for α-smooth muscle actin (SMA), vascular endothelial growth factor receptor 2 (VEGFR2), and CD31 in aortic tissues was performed to evaluate myofibroblast differentiation and endothelial markers.In HOCl-treated mice, intima–media thickening with reduced lumen diameter was observed in the aorta and in small renal arteries and simvastatin administration prevented this increase. Aortic and renal myofibroblasts count, as expressed by α-SMA?+?density, was lower in the group of mice treated with simvastatin compared to HOCl-treated mice. Simvastatin prevented the reduction in VEGFR2 and CD31 expression induced by HOCl. Conclusions The administration of simvastatin regulates collagen deposition in the aortic tissues and in the small renal arteries by modulating myofibroblasts differentiation and vascular markers. Further studies are needed to better address the effect of statins in the macrovascular component of SSc.  相似文献   

10.
Izumo T  Kondo M  Nagai A 《Life sciences》2007,80(20):1882-1886
Leukotrienes are lipid mediators of inflammation derived from the 5-lipoxygenase pathway of arachidonic acid metabolism, and recent evidence suggests that they play an important role in pulmonary fibrosis. Montelukast is a cysteinyl-leukotriene 1 receptor antagonist that has been found to reduce airway remodeling, including subepithelial fibrosis, in a murine model of asthma, but the therapeutic effect of montelukast on pulmonary fibrosis remains unclear. In this study, we investigated whether montelukast is capable of preventing bleomycin-induced pulmonary fibrosis in mice. On day 1, C57BL/6 mice were given a single intratracheal injection of bleomycin (2.5 mg/kg), and montelukast (1.0 mg/kg) or vehicle alone subcutaneously 2 h later and on days 1-5 of each week for two weeks. The total number of cells in bronchoalveolar lavage fluid (BALF) was reduced in the montelukast group on day 7 and on day 14, and cellular inflammation and fibrosis were attenuated on day 14 as indicated by significant decrease in the Ashcroft score and lung hydroxyproline content. Although cysteinyl-leukotriene level in BALF was not significantly different, transforming growth factor beta (TGFbeta) level in BALF by ELISA and TGFbeta expression in lung tissue by immunohistochemistry was reduced on day 14 in the montelukast group. The results of this study show that montelukast inhibits the inflammatory process and development of bleomycin-induced pulmonary fibrosis in mice and that these effects may be associated with a decrease in TGFbeta expression. They also suggest that montelukast may serve as a new therapy for patients with interstitial pulmonary fibrosis.  相似文献   

11.
Ibuprofen, a cyclooxygenase inhibitor, improves pulmonary and cardiovascular injury in endotoxemia. We studied the mechanism of the beneficial effects of ibuprofen in relation to production of inflammatory mediators which influence vascular tone in endotoxemia. Rats were randomly assigned to one of three groups: (1) control, (2) endotoxemia alone; and (3) ibuprofen pretreatment and endotoxemia. Plasma and lung lavage concentrations of tumor necrosis factor, thromboxane B2 (TXB2), leukotriene (LT) C4,D4,E4 and nitric oxide (NO) were determined over a 2 h period. Pretreatment with ibuprofen resulted in increased survival, and attenuation of pulmonary and cardiovascular dysfunction when compared to the rats receiving endotoxin alone. The marked elevation in plasma TXB2 concentration in endotoxemic rats was prevented by pretreatment with ibuprofen. Similarly, pretreatment with ibuprofen prevented the decrease in lung lavage NO levels in endotoxemic rats. The improved survival and cardiopulmonary protection in endotoxemic rats pretreated with ibuprofen appears to be related to decreased thromboxane production and preservation of endothelial production of nitric oxide.  相似文献   

12.
13.

Introduction

Recent advances suggest that the cellular redox state may play a significant role in the progression of fibrosis in systemic sclerosis (SSc). Another, and as yet poorly accounted for, feature of SSc is its overlap with thyroid abnormalities. Previous reports demonstrate that hypothyroidism reduces oxidant stress. The aim of this study was therefore to evaluate the effect of propylthiouracil (PTU), and of the hypothyroidism induced by it, on the development of cutaneous and pulmonary fibrosis in the oxidant stress murine model of SSc.

Methods

Chronic oxidant stress SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl) for 6 weeks. Mice (n = 25) were randomized into three arms: HOCl (n = 10), HOCl plus PTU (n = 10) or vehicle alone (n = 5). PTU administration was initiated 30 minutes after HOCl subcutaneous injection and continued daily for 6 weeks. Skin and lung fibrosis were evaluated by histologic methods. Immunohistochemical staining for alpha-smooth muscle actin (α-SMA) in cutaneous and pulmonary tissues was performed to evaluate myofibroblast differentiation. Lung and skin concentrations of vascular endothelial growth factor (VEGF), extracellular signal-related kinase (ERK), rat sarcoma protein (Ras), Ras homolog gene family (Rho), and transforming growth factor (TGF) β were analyzed by Western blot.

Results

Injections of HOCl induced cutaneous and lung fibrosis in BALB/c mice. PTU treatment prevented both dermal and pulmonary fibrosis. Myofibroblast differentiation was also inhibited by PTU in the skin and lung. The increase in cutaneous and pulmonary expression of VEGF, ERK, Ras, and Rho in mice treated with HOCl was significantly prevented in mice co-administered ////with PTU.

Conclusions

PTU, probably through its direct effect on reactive oxygen species or indirectly through thyroid function inhibition, prevents the development of cutaneous and pulmonary fibrosis by blocking the activation of the Ras-ERK pathway in the oxidant-stress animal model of SSc.  相似文献   

14.
Endothelin-1 (ET-1) acts as a key regulator of vasoconstriction and fibrosis. Many previous studies have focused on the role of ET-1 in scleroderma (systemic sclerosis, SSc).We investigated the effects of ET-1 on the production of extracellular matrix in SSc and normal skin fibroblasts. Primary cultured dermal fibroblasts from SSc patients and healthy controls were treated with ET-1 (25 ng/mL) for 0 min, 15 min, 1 h, 24 h, 48 h and 72 h, respectively. Our results showed that, in SSc fibroblasts, ET-1 upregulated collagen type I, connective tissue growth factor (CTGF), type I plasminogen activator inhibitor (PAI-1) and pAkt in a time-dependent manner within 72 h; in normal fibroblasts, 25 ng/mL ET-1 stimulation correlated with high levels of CTGF, PAI-1 and pAkt. The secretion of fibronectin (FN), collagen type I, and PAI-1 is markedly increased in the supernatant of both SSc fibroblasts and normal fibroblasts. Furthermore, ET-1 phosphorylates Smad2 and Smad3 in normal fibroblasts, but not in SSc fibroblasts. In conclusion, our results demonstrated that ET-1 may induce fibrosis in dermal fibroblasts through Akt signals.  相似文献   

15.
The purpose of this study was to characterize vascular responses and to examine mechanisms of vascular dysfunction in TallyHo mice, a new polygenic model of Type II diabetes. Responses of cerebral arterioles and carotid arteries were examined in vivo by using a cranial window and in vitro by using tissue baths, respectively. Dilatation of cerebral arterioles (baseline diameter = 33 +/- 1 micro m) in response to acetylcholine, but not to nitroprusside, was markedly reduced (P < 0.05) in TallyHo mice. Responses of cerebral arterioles to acetylcholine in TallyHo mice were restored to normal with polyethylene glycol-superoxide dismutase (100 U/ml; a superoxide scavenger). Responses to acetylcholine were also greatly impaired (P < 0.05) in the carotid arteries from TallyHo mice. Phenylephrine- and serotonin-, but not to KCl- or U46619-, induced contraction was increased two- to fourfold (P < 0.05) in carotid arteries of TallyHo mice. Responses to phenylephrine and serotonin were reduced to similar levels in the presence of Y-27632 (an inhibitor of Rho kinase; 3 micro mol/l). These findings provide the first evidence that vascular dysfunction is present in TallyHo mice and that oxidative stress and enhanced activity of Rho kinase may contribute to altered vascular function in this genetic model of Type II diabetes.  相似文献   

16.
Selective cerebral vascular dysfunction in Mn-SOD-deficient mice.   总被引:1,自引:0,他引:1  
We tested the hypothesis that the mitochondrial form of superoxide dismutase [manganese superoxide dismutase (Mn-SOD)] protects the cerebral vasculature. Basilar arteries (baseline diameter approximately 140 microm) from mice were isolated, cannulated, and pressurized to measure vessel diameter. In arteries from C57BL/6 mice preconstricted with U-46619, acetylcholine (ACh; an endothelium-dependent vasodilator) produced dilation that was similar in male and female mice and abolished by an inhibitor of nitric oxide synthase. Vasodilation to ACh was not altered in heterozygous male or female Mn-SOD-deficient (Mn-SOD+/-) mice compared with wild-type littermate controls (Mn-SOD+/+). Constriction of the basilar artery to arginine vasopressin, but not KCl or U-46619, was increased in Mn-SOD+/- mice (P<0.05), and this effect was prevented by tempol, a scavenger of superoxide. We also examined responses of cerebral (pial) arterioles (branches of the middle cerebral artery, control diameter approximately 30 microm) to ACh in anesthetized mice using a cranial window. Responses to ACh, but not nitroprusside (an endothelium-independent agonist), were reduced (P<0.05) in cerebral arterioles in Mn-SOD+/- mice, and this effect was prevented by tempol. Thus these are the first data on the role of Mn-SOD in cerebral circulation. In the basilar artery, ACh produced nitric oxide-mediated dilation that was similar in male and female mice. Under normal conditions in cerebral arteries, responses to ACh were not altered but constrictor responses were selectively enhanced in Mn-SOD+/- mice. In the cerebral microcirculation, there was superoxide-mediated impairment of responses to ACh.  相似文献   

17.
Monocyte chemoattractant protein-1 (MCP-1) is a proinflammatory chemokine and may play an important role in the development of pulmonary fibrosis. We examined a new therapeutic strategy that comprises the transfection of the mutant MCP-1 gene into skeletal muscles as a biofactory for anti-MCP-1 therapy against bleomycin-induced pulmonary fibrosis in mice. Overexpression of the mutant MCP-1 gene at 10-14 days after intratracheal instillation of bleomycin resulted in decreased DNA damage, apoptosis, and pulmonary fibrosis at 14 days. However, overexpression of the mutant MCP-1 at 0-4 days after bleomycin instillation did not result in decreased pathological grade, DNA damage, or apoptosis at 7 and 14 days. Because, in this model, inflammatory cell infiltration begins at 3 days and is followed by interstitial fibrosis, it is likely that MCP-1 has an important role to play in the development of fibrogenesis but not in the development of early lung inflammation. This method does not require the use of viral vector or neutralizing antibody, and, as such, it is possible to avoid problems regarding the pathogenicity of the viral vector or immunocomplex. This new strategy may be a beneficial method of treating pulmonary fibrosis from the viewpoint of clinical application.  相似文献   

18.
19.

Background

Chronic hypoxia induces pulmonary arterial hypertension (PAH). Smooth muscle cell (SMC) proliferation and hypertrophy are important contributors to the remodeling that occurs in chronic hypoxic pulmonary vasculature. We hypothesized that rapamycin (RAPA), a potent cell cycle inhibitor, prevents pulmonary hypertension in chronic hypoxic mice.

Methods

Mice were held either at normoxia (N; 21% O2) or at hypobaric hypoxia (H; 0.5 atm; ~10% O2). RAPA-treated animals (3 mg/kg*d, i.p.) were compared to animals injected with vehicle alone. Proliferative activity within the pulmonary arteries was quantified by staining for Ki67 (positive nuclei/vessel) and media area was quantified by computer-aided planimetry after immune-labeling for α-smooth muscle actin (pixel/vessel). The ratio of right ventricle to left ventricle plus septum (RV/[LV+S]) was used to determine right ventricular hypertrophy.

Results

Proliferative activity increased by 34% at day 4 in mice held under H (median: 0.38) compared to N (median: 0.28, p = 0.028) which was completely blocked by RAPA (median HO+RAPA: 0.23, p = 0.003). H-induced proliferation had leveled off within 3 weeks. At this time point media area had, however, increased by 53% from 91 (N) to 139 (H, p < 0.001) which was prevented by RAPA (H+RAPA: 102; p < 0.001). RV/[LV+S] ratio which had risen from 0.17 (N) to 0.26 (H, p < 0.001) was attenuated in the H+RAPA group (0.22, p = 0.041). For a therapeutic approach animals were exposed to H for 21 days followed by 21 days in H ± RAPA. Forty two days of H resulted in a media area of 129 (N: 83) which was significantly attenuated in RAPA-treated mice (H+RAPA: 92). RV/[LV+S] ratios supported prevention of PH (N 0.13; H 0.27; H+RAPA 0.17). RAPA treatment of N mice did not influence any parameter examined.

Conclusion

Therapy with rapamycin may represent a new strategy for the treatment of pulmonary hypertension.  相似文献   

20.
Diabetic cardiomyopathy (DCM) is associated with oxidative stress and augmented inflammation in the heart. Neuraminidases (NEU) 1 has initially been described as a lysosomal protein which plays a role in the catabolism of glycosylated proteins. We investigated the role of NEU1 in the myocardium in diabetic heart. Streptozotocin (STZ) was injected intraperitoneally to induce diabetes in mice. Neonatal rat ventricular myocytes (NRVMs) were used to verify the effect of shNEU1 in vitro. NEU1 is up-regulated in cardiomyocytes under diabetic conditions. NEU1 inhibition alleviated oxidative stress, inflammation and apoptosis, and improved cardiac function in STZ-induced diabetic mice. Furthermore, NEU1 inhibition also attenuated the high glucose-induced increased reactive oxygen species generation, inflammation and, cell death in vitro. ShNEU1 activated Sirtuin 3 (SIRT3) signaling pathway, and SIRT3 deficiency blocked shNEU1-mediated cardioprotective effects in vitro. More importantly, we found AMPKα was responsible for the elevation of SIRT3 expression via AMPKα-deficiency studies in vitro and in vivo. Knockdown of LKB1 reversed the effect elicited by shNEU1 in vitro. In conclusion, NEU1 inhibition activates AMPKα via LKB1, and subsequently activates sirt3, thereby regulating fibrosis, inflammation, apoptosis and oxidative stress in diabetic myocardial tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号