首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow mesenchymal stem cells (BMSC) can ameliorate ischemic injury of various tissues. However, the molecular mechanisms involved remain to be clarified. In this study, we intend to investigate the effects of BMSC-derived conditioned medium (BMSC-CM) on hypoxia/reoxygenation (H/R)-induced injury of H9c2 myocardial cells, and the potential mechanisms. Cell injury was determined through level of cell viability, lactate dehydrogenase (LDH) release, total intracellular reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), and cell apoptosis. Autophagic activity of cells was detected through levels of the autophagy-associated proteins and autophagic flux. Results showed that BMSC-CM alleviated H/R-induced injury in H9c2 cells, as demonstrated by increased cell viability and Δψm, decreased ROS production, LDH release, and cell apoptosis. Furthermore, the H/R treatment induced a decrease in autophagic activity and an increase in Notch2 signaling activation in H9c2 cells. In the presence of BMSC-CM, the autophagic activity impaired by the H/R treatment was upregulated with decreased phosphorylation of mTOR, and the activation of Notch2 signaling was downregulated. These effects of BMSC-CM could be replicated by Notch signaling inhibitor. In contrast, inhibitors of cell autophagy including chloroquine (CQ) and 3-methyladenine, diminished the protective effects of BMSC-CM. Taken together results, our study showed that BMSC-CM could protect H9c2 cells from H/R-induced injury potentially through regulating Notch2/mTOR/autophagy signaling. These findings may provide a novel insight into the mechanisms of BMSC-CM in therapy of myocardial ischemia/reperfusion injury as well as other ischemic diseases.  相似文献   

2.

Background

Ischemia-reperfusion (I/R) injury associated with living donor liver transplantation impairs liver graft regeneration. Mesenchymal stem cells (MSCs) are potential cell therapeutic targets for liver disease. In this study, we demonstrate the impact of MSCs against hepatic I/R injury and hepatectomy.

Methodology/Principal Findings

We used a new rat model in which major hepatectomy with I/R injury was performed. Male Lewis rats were separated into two groups: an MSC group given MSCs after reperfusion as treatment, and a Control group given phosphate-buffered saline after reperfusion as placebo. The results of liver function tests, pathologic changes in the liver, and the remnant liver regeneration rate were assessed. The fate of transplanted MSCs in the luciferase-expressing rats was examined by in vivo luminescent imaging. The MSC group showed peak luciferase activity of transplanted MSCs in the remnant liver 24 h after reperfusion, after which luciferase activity gradually declined. The elevation of serum alanine transaminase levels was significantly reduced by MSC injection. Histopathological findings showed that vacuolar change was lower in the MSC group compared to the Control group. In addition, a significantly lower percentage of TUNEL-positive cells was observed in the MSC group compared with the controls. Remnant liver regeneration rate was accelerated in the MSC group.

Conclusions/Significance

These data suggest that MSC transplantation provides trophic support to the I/R-injured liver by inhibiting hepatocellular apoptosis and by stimulating regeneration.  相似文献   

3.
Ischemia and reperfusion (I/R) injury is associated with extensive loss of cardiac myocytes. Bnip3 is a mitochondrial pro-apoptotic Bcl-2 protein which is expressed in the adult myocardium. To investigate if Bnip3 plays a role in I/R injury, we generated a TAT-fusion protein encoding the carboxyl terminal transmembrane deletion mutant of Bnip3 (TAT-Bnip3DeltaTM) which has been shown to act as a dominant negative to block Bnip3-induced cell death. Perfusion with TAT-Bnip3DeltaTM conferred protection against I/R injury, improved cardiac function, and protected mitochondrial integrity. Moreover, Bnip3 induced extensive fragmentation of the mitochondrial network and increased autophagy in HL-1 myocytes. 3D rendering of confocal images revealed fragmented mitochondria inside autophagosomes. Enhancement of autophagy by ATG5 protected against Bnip3-mediated cell death, whereas inhibition of autophagy by ATG5K130R enhanced cell death. These results suggest that Bnip3 contributes to I/R injury which triggers a protective stress response with upregulation of autophagy and removal of damaged mitochondria.  相似文献   

4.
Renal ischemia-reperfusion (I/R) injury is inevitable in transplantation, and it results in renal tubular epithelial cells undergoing cell death. We observed an increase in autophagosomes in the tubular epithelial cells of I/R-injured mouse models, and in biopsy specimens from human transplanted kidney. However, it remains unclear whether autophagy functions as a protective pathway, or contributes to I/R-induced cell death. Here, we employed the human renal proximal tubular epithelial cell line HK-2 in order to explore the role of autophagy under hypoxia (1% O2) or activation of reactive oxygen species (500 μM H2O2). When compared to normoxic conditions, 48 h of hypoxia slightly increased LC3-labeled autophagic vacuoles and markedly increased LAMP2-labeled lysosomes. We observed similar changes in the mouse IR-injury model. We then assessed autophagic generation and degradation by inhibiting the downstream lysosomal degradation of autophagic vacuoles using lysosomal protease inhibitor. We found that autophagosomes increased markedly under hypoxia in the presence of lysosomal protease inhibitors, thus suggesting that hypoxia induces high turnover of autophagic generation and degradation. Furthermore, inhibition of autophagy significantly inhibited H2O2-induced cell death. In conclusion, high turnover of autophagy may lead to autophagic cell death during I/R injury.  相似文献   

5.
Zhelong Xu  Juan Zhou 《Biometals》2013,26(6):863-878
As an important trace element, zinc is required for the normal cellular structure and function, and impairment of zinc homeostasis is associated with a variety of health problems including cardiovascular disease. Zinc homeostasis is regulated through zinc transporters, zinc binding molecules, and zinc sensors. Zinc also plays a critical role in cellular signaling. Studies have documented that zinc homeostasis is impaired by ischemia/reperfusion in the heart and zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. Both exogenous and endogenously released zinc may play an important role in cardioprotection against ischemia/reperfusion injury. The goal of this review is to summarize the current understanding of the roles of zinc homeostasis and zinc signaling in myocardial ischemia/reperfusion injury.  相似文献   

6.
Although paracrine effects of mesenchymal stem cells (MSCs) have been suggested previously, cardioprotection by human MSC secretions has never been demonstrated. Human MSC-conditioned medium (CM) was collected by following a clinically compliant protocol. In a porcine model of ischemia and reperfusion injury, intravenous and intracoronary MSC-CM treatment significantly reduced myocardial nuclear oxidative stress as determined by immunostaining for 8-hydroxy-2′-deoxyguanosine. In addition, expression levels of phospho-SMAD2 and active caspase 3 were diminished following CM treatment, suggesting that TGF-β signaling and apoptosis were reduced. This was associated with a 60% reduction in infarct size and marked improvement of systolic and diastolic cardiac performance as assessed with echocardiography and pressure volume loops. Fractionation studies revealed that only the fraction of the CM containing products > 1000 kDa (100–220 nm) provided cardioprotection in a mouse model of ischemia and reperfusion injury. This indicates that the responsible paracrine factor of human MSCs is likely a large complex rather than a single small molecule. These data identify human MSC-CM as a promising therapeutic option to reduce myocardial infarct size in patients with acute MI and suggest that the use of stem cell secretions could extend the applicability of stem cells for therapeutic purposes.  相似文献   

7.
Uncoupling protein 2 (UCP2), located in the mitochondrial inner membrane, is a predominant isoform of UCP that expressed in the heart and other tissues of human and rodent tissues. Nevertheless, its functional role during myocardial ischemia/reperfusion (I/R) is not entirely understood. Ischemic preconditioning (IPC) remarkably improved postischemic functional recovery followed by reduced lactate dehydrogenase (LDH) release with simultaneous upregulation of UCP2 in perfused myocardium. We then investigated the role of UCP2 in IPC-afforded cardioprotective effects on myocardial I/R injury with adenovirus-mediated in vivo UCP2 overexpression (AdUCP2) and knockdown (AdshUCP2). IPC-induced protective effects were mimicked by UCP2 overexpression, while which were abolished with silencing UCP2. Mechanistically, UCP2 overexpression significantly reinforced I/R-induced mitochondrial autophagy (mitophagy), as measured by biochemical hallmarks of mitochondrial autophagy. Moreover, primary cardiomyocytes infected with AdUCP2 increased simulated ischemia/reperfusion (sI/R)-induced mitophagy and therefore reversed impaired mitochondrial function. Finally, suppression of mitophagy with mdivi-1 in cultured cardiomyocytes abolished UCP2-afforded protective effect on sI/R-induced mitochondrial dysfunction and cell death. Our data identify a critical role for UCP2 against myocardial I/R injury through preventing the mitochondrial dysfunction through reinforcing mitophagy. Our findings reveal novel mechanisms of UCP2 in the cardioprotective effects during myocardial I/R.  相似文献   

8.
9.
The complement system activation can mediate myocardial ischemia and reperfusion (I/R). Inhibition of C5a activity reveals attenuation of I/R-induced myocardial infarct size. However, the contribution of C5a receptor (C5aR) to I/R injury remains to be unknown. Here, we reported that both mRNA and protein for the C5aR were constitutively expressed on cardiomyocytes and upregulated as a function of time after I/R-induced myocardial cell injury in mice. Blockade of C5aR markedly decreased microvascular permeability in ischemic myocardial area and leukocyte adherence to coronary artery endothelium. Importantly, the blocking of C5aR with an anti-C5aR antibody was associated with inhibition in activation of protein kinase C delta (PKC-delta) and induction of PKC-mediated mitogen-activated protein kinase phosphatases-1 (MKP-1) leading to the increased activity of p42/p44 mitogen-activated protein (MAP) kinase cascade. These data provide evidence that C5aR-mediated myocardial cell injury is an important pathogenic factor, and that C5aR blockade may be useful therapeutic targets for the prevention of myocardial I/R injury.  相似文献   

10.
目的:探讨激动乙醛脱氢酶2(ALDH2)在糖尿病大鼠心肌损伤中的作用。方法:腹腔注射55 mg/kg链脲佐菌素复制糖尿病大鼠模型,分为糖尿病组和乙醇+糖尿病组(n=8)。8周后行离体心肌缺血/再灌注(I/R),测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量。测定空腹血糖、糖化血红蛋白(HbA1c)水平。RT-PCR和Western blot测定左心室前壁心尖组织线粒体ALDH2 mRNA和蛋白表达。结果:与正常大鼠心肌I/R相比,糖尿病大鼠左室发展压、左心室最大上升和下降速率、左室做功进一步下降,左室舒张末压抬高,复灌期冠脉流出液中LDH释放增多,心室ALDH2 mRNA和蛋白表达降低;与糖尿病大鼠心肌I/R相比,ALDH2激动剂乙醇明显促进左室发展压、左心室最大上升和下降速率、左室做功的恢复,降低左室舒张末压,同时降低HbA1c水平和LDH的释放,ALDH2 mRNA和蛋白表达增高。结论:糖尿病大鼠心肌缺血/再灌注时,心肌ALDH2表达降低;增强ALDH2在糖尿病大鼠心肌中的表达可发挥保护作用。  相似文献   

11.
AimsWe tested the hypothesis that daidzein may reduce myocardial damage by both inhibiting the release of cytokines and limiting the nuclear translocation of NF-kB.Main methodsMale Sprague–Dawley rats were anesthetized, and the left anterior descending coronary artery (LAD) was ligated for 25 min. Twenty-four hours after reperfusion was established, the hemodynamics and infarct size were examined.Key findingsTreatment with daidzein (10 mg/kg, i.p.) 1 h prior to the ischemia/reperfusion procedure (I/R) reduced the infarct size by 52.8% (P < 0.05). Daidzein also significantly improved I/R-induced myocardial contractile dysfunction by improving the left ventricular diastolic pressure and the positive and negative maximal values of the first derivative of the left ventricular pressure. In addition, daidzein reduced the plasma levels of TNF-α and IL-6 in I/R rats and decreased malondialdehyde levels, myeloperoxidase activity, catalase activity and neutrophil infiltration in I/R rat myocardium. Interestingly, daidzein inhibited I/R-induced myocardial apoptosis by decreasing DNA strand breaks and cleaved caspase-3 activity. Furthermore, daidzein inhibited both the nuclear translocation of NF-kB in I/R rat hearts and the H2O2-induced activation of NF-kB-luciferase activity in human umbilical vein endothelial cells.SignificanceThis study reveals that the administration of daidzein in vivo attenuates I/R-induced myocardial damage via inhibition of NF-kB activation, which in turn may suppress inflammatory cytokine expression.  相似文献   

12.
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart.  相似文献   

13.
《Autophagy》2013,9(1):140-141
A steady increase in life expectancy has resulted in an equivalent increase in elderly patients who are more susceptible to diseases than young patients. In a recent study, we found that in both in vitro and in vivo models of ischemia/reperfusion (I/R), a loss of ATG4B is causatively associated with the increased sensitivity of the liver to I/R injury with age. Our work suggests that a restoration or enhancement of autophagy is a novel therapeutic modality to ameliorate liver function after I/R to aged livers.  相似文献   

14.
目的: 探讨细胞自噬在大鼠缺血/再灌注肺损伤中的作用。方法: 随机将40只SD大鼠分为5组(n=8),分别为 ① 假手术组(Sham组):只开胸3.5 h;② 缺血/再灌注组(I/R组):开胸夹闭肺门缺血0.5 h后再灌注3 h;③ 溶剂组(DMSO组):术前1 h腹腔注射DMSO溶液;④自噬激动剂组(Rap组):术前腹腔注射雷帕霉素溶液;⑤自噬抑制剂组(3-MA组):术前1 h腹腔注射3-MA溶液;后三组的其余操作同I/R组。实验结束后处死大鼠,取肺组织,记录并计算肺组织湿/干重比(W/D)、总肺含水量变化(TLW) ,光镜和电镜观察肺组织及细胞形态,计算肺泡损伤率(IAR),Western blot检测自噬相关蛋白的表达情况。结果: 相对于sham组,其余四组肺W/D、TLW、IAR均明显升高,自噬相关蛋白表达明显上升,p-AMPK、Beclin 1、LC3 II 蛋白明显增多,p-mTOR、p62蛋白明显减少(P<0.05或P<0.01),光镜下其余各组肺组织有不同程度的水肿渗出,肺泡结构紊乱,电镜下细胞超微结构损伤加重,部分可见自噬小体;与DMSO组相比,3-MA组肺W/D、TLW、IAR明显下降(P<0.05或P<0.01),自噬相关蛋白表达明显下降,肺间质水肿较轻,细胞渗出较少,细胞超微结构损伤减轻,未见自噬小体。而I/R、DMSO、Rap组的各项指标变化无统计学差异(P>0.05)。结论: 肺缺血/再灌注可诱发细胞自噬增强,从而引起大鼠肺损伤。  相似文献   

15.
Ischemia/reperfusion (I/R) injury is a serious problem resulting from clinical setting of coronary revascularization. Despite extensive studies on I/R injury, the molecular bases of cardiac dysfunction caused by I/R are still unknown, but are likely to result from alterations in protein expression. Isolated rat hearts were subjected to 15-30 min of no-flow ischemia without (Ischemia protocol) or with 30 min of reperfusion (I/R protocol). 2-DE analysis of heart proteins from both experimental protocols showed wide-ranging changes in protein levels. In the Ischemia protocol, 39 protein spots were changed in ischemic groups and those changes correlated with duration of ischemia. Ninety percent of the affected proteins were increased. In contrast to increased protein levels, the total messenger RNA (mRNA) level decreased approximately two fold. Compared to the Ischemia protocol, changes in protein levels in the I/R protocol did not correlate with the duration of ischemia and the degree of recovery of mechanical function. The decrease of affected protein from I/R protocol was associated with the increase in total protein level in reperfusate. Our studies show that the protein increase is correlated with the mechanical function of the I/R hearts and the increase is not likely associated with an increase in protein synthesis.  相似文献   

16.
大鼠心脏缺血-再灌注损伤对心肌L-Arg/NO途径的影响   总被引:5,自引:2,他引:5  
Zheng HZ  Tang CS  Su JL  Wu T 《生理学报》1999,51(1):25-30
为探讨大鼠心脏缺血-再灌注损伤(IRI)期间一氧化氮(NO)生成增加的环节和过程。本实验用离体灌流大鼠心脏,预灌流15 min,停灌45 min,取30 ml KH 液循环灌流15 min,观察冠脉流出液中细胞胞浆酶(LDH)、蛋白质、肌红蛋白漏出量和NO  相似文献   

17.
《Autophagy》2013,9(4):416-421
Autophagy is an important process in the heart which is responsible for the normal turnover of long lived proteins and organelles. Inhibition of autophagy leads to the accumulation of protein aggregates and dysfunctional organelles which can cause cell death. Autophagy occurs at low basal levels under normal conditions in the heart, but is rapidly upregulated in response to stress such as nutrient deprivation, hypoxia, and pressure overload. Autophagy is a prominent feature of myocardial ischemia and reperfusion. Although enhanced autophagy is often seen in dying cardiac myocytes, the functional significance of autophagy under these conditions is not clear. Upregulation of autophagy has been reported to protect cardiac cells against death as well as be the cause of it. Here, we review the evidence that autophagy can have both beneficial and detrimental roles in the myocardium, and discuss potential mechanisms by which autophagy provides protection in cells.  相似文献   

18.
Autophagy is an important process in the heart which is responsible for the normal turnover of long lived proteins and organelles. Inhibition of autophagy leads to the accumulation of protein aggregates and dysfunctional organelles which can cause cell death. Autophagy occurs at low basal levels under normal conditions in the heart, but is rapidly upregulated in response to stress such as nutrient deprivation, hypoxia, and pressure overload. Autophagy is a prominent feature of myocardial ischemia and reperfusion. Although enhanced autophagy is often seen in dying cardiac myocytes, the functional significance of autophagy under these conditions is not clear. Upregulation of autophagy has been reported to protect cardiac cells against death as well as be the cause of it. Here, we review the evidence that autophagy can have both beneficial and detrimental roles in the myocardium, and discuss potential mechanisms by which autophagy provides protection in cells.  相似文献   

19.
Mesenchymal stem cells (MSCs) have been proved to exert considerable therapeutic effects on ischemia-reperfusion (I/R)-induced injury, but the underlying mechanism remains unknown. In this study, we aimed to explore the potential molecular mechanism underlying the therapeutic effect of MSCs-derived exosome reinforced with miR-20a in reversing liver I/R injury. Quantitative real-time polymerase chain reaction, Western blot, and IHC were carried out to compare the differential expressions of miR-20a, Beclin-I, FAS, Caspase-3, mTOR and P62 in IR rats and normal rats. TUNEL was performed to assess IR-induced apoptosis in IR rats, and luciferase assay was used to confirm the inhibitory effect of miR-20a on Beclin-I and FAS expression. Among the 12 candidate microRNAs (miRNAs), miR-486, miR-25, miR-24, miR-20a,miR-466 and miR-433-3p were significantly downregulated in I/R. In particular, miR-20a, a miRNA highly expressed in umbilical cord-derived mesenchymal stem cells, was proved to bind to the 3ʹ UTR of Beclin-I and FAS to exert an inhibitory effect on their expressions. Since Beclin-I and FAS were aberrantly upregulated in IR, exosomes separated from UC-MSCs showed therapeutic efficacy in reversing I/R induced apoptosis. In addition, exosomes reinforced with miR-20a and separated from UC-MSCs almost fully alleviated I/R injury. Furthermore, our results showed that miR-20a could alleviate the abnormal expression of genes related to apoptosis and autophagy, such as active Caspase-3, mTOR, P62, and LC3II. This study presented detailed evidence to clarify the mechanism underlying the therapeutic efficacy of UC-MSCs in the treatment of I/R injury.  相似文献   

20.
Diagnosis of acute coronary syndromes is based on protein biomarkers, such as the cardiac troponins (cTnI/cTnT) and creatine kinase (CK-MB) that are released into the circulation. Biomarker discovery is focused on identifying very low abundance tissue-derived analytes from within albumin-rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile of 60 min reperfusion following brief, reversible ischemia (15 min; 15I/60R) for comparison with irreversible I/R (60I/60R). Perfusate proteins were separated using two-dimensional gel electrophoresis (2-DE) and identified by mass spectrometry (MS), revealing 26 tissue-specific proteins released during reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC-MS) and gel-free (LC-MS/MS) methods. A total of 192 tissue-specific proteins were identified during reperfusion post-60I. Identified proteins included those previously associated with I/R (myoglobin, CK-MB, cTnI, and cTnT), in addition to examples currently under investigation in large cohort studies (heart-type fatty acid binding protein; FABPH). The postischemic release profile of a novel cardiac-specific protein, cysteine and glycine-rich protein 3 (Csrp3; cardiac LIM domain protein) was validated by Western blot analysis. We also identified Csrp3 in serum from 6 of 8 patients postreperfusion following acute myocardial infarction. These studies indicate that animal modeling of biomarker release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号