共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of the present study was to investigate the effect of resveratrol on acute pharyngitis in the mice models induced by xylene and carrageenan treatment. The mice treated with various doses of resveratrol (5, 10, 15, 20 and 30 mg/kg) showed inhibition of edema in a dose dependent manner. The edema formation was reduced by 67% in the mice treated with 20 mg/kg of resveratrol compared to those in the control group. A significant (P < 0.02) reduction of paw swelling was observed in the mice treated with 20 mg/kg dose of resveratrol compared to the control group. The inhibition of paw swelling in mice was also caused by votalin by the extent of reduction was significantly (P < 0.02) lower compared to the resveratrol treatment. In the mice model of paw swelling, treatment with 20 mg/kg doses of resveratrol significantly (P < 0.02) reduced the expression of PGE2 compared to the control group. On the other hand, resveratrol played a vital role in the inhibition of carrageenan induced increase in the expression of COX-2 in mice. The inhibition in the COX-2 expression by 20 mg/kg doses of resveratrol was significantly higher compared to the known drug, votalin. Thus the current study revealed that resveratrol treatment inhibits acute pharyngitis in the mice model through inhibition of PGE2/COX-2 expression. Thus resveratrol can be used for the treatment of acute pharyngitis. 相似文献
2.
Meng JP Ceryak S Aratsu Z Jones L Epstein L Bouscarel B 《American journal of physiology. Cell physiology》2006,291(3):C546-C554
We have previously reported that the bile acids chenodeoxycholate (CDCA) and ursodeoxycholate (UDCA) decreased PGE1-induced cAMP production in a time- and dose-dependent manner not only in hepatocytes but also in nonhepatic cells, including dermal fibroblasts. In the present study, we investigated the physiological relevance of this cAMP modulatory action of bile acids. PGE1 induced cAMP production in a time- and dose-dependent manner. Moreover, PGE1 (1 µM), forskolin (110 µM), and the membrane-permeable cAMP analog CPT-cAMP (0.110 µM) decreased dermal fibroblast proliferation in a dose-dependent manner with a maximum inhibition of 80%. CDCA alone had no significant effect on cell proliferation at a concentration up to 25 µM. However, CDCA significantly reduced PGE1-induced cAMP production by 8090% with an EC50 of 20 µM. Furthermore, at concentrations 25 µM, CDCA significantly attenuated the PGE-1-induced decreased cell proliferation. However, at concentrations of 50 µM and above, while still able to almost completely inhibit PGE-1-induced cAMP production, CDCA, at least in part through an increased cyclooxygenase-2 (COX-2) expression level and PGE2 synthesis, produced a direct and significant decrease in cell proliferation. Indeed, the CDCA effect was partially blocked by 5070% by both indomethacin and dexamethasone. In addition, overexpression of COX-2 cDNA wild type resulted in an increased efficacy of CDCA to block cell proliferation. The effects of CDCA on both cAMP production and cell proliferation were similar to those of UDCA and under the same conditions cholate had no effect. Results of the present study underline pathophysiological consequences of cholestatic hepatobiliary disorders, in which cells outside of the enterohepatic circulation can be exposed to elevated bile acid concentrations. Under these conditions, low bile acid concentrations can attenuate the negative hormonal control on cell proliferation, resulting in the stimulation of cell growth, while at high concentrations these bile acids provide for a profound and prolonged inhibition of cell proliferation. chenodeoxycholic acid; cyclic adenosine monophosphate 相似文献
3.
Haiyan Li Fuchun Zheng Yanmei Zhang Jiajia Sun Fenfei Gao Ganggang Shi 《Journal of cellular and molecular medicine》2022,26(15):4216
Myocardial ischemia/reperfusion injury (MI/RI) is the main cause of deaths in the worldwide, leading to severe cardiac dysfunction. Resveratrol (RSV) is a polyphenol plant‐derived compound. Our study aimed to elucidate the underlying molecular mechanism of preconditioning RSV in protecting against MI/RI. Mice were ligated and re‐perfused by the left anterior descending branch with or without RSV (30 mg/kg·ip) for 7 days. Firstly, we found that RSV pretreatment significantly alleviated myocardial infarct size, improved cardiac function and decreased oxidative stress. Furthermore, RSV activated p‐AMPK and SIRT1, ameliorated inflammation including the level of TNF‐α and IL‐1β, and promoting autophagy level. Moreover, neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown the expression of AMPK, SIRT1 or FOXO1 were used to uncover the underlying molecular mechanism for the cardio‐protection of RSV. In NRVMs, RSV increased cellular viability, decreased LDH release and reduced oxidative stress. Importantly, Compound C(CpC) and EX527 reversed the effect of RSV against MI/RI in vivo and in vitro and counteracted the autophagy level induced by RSV. Together, our study indicated that RSV could alleviate oxidative stress in cardiomyocytes through activating AMPK/SIRT1‐FOXO1 signallingpathway and enhanced autophagy level, thus presenting high potential protection on MI/RI. 相似文献
4.
Yuyan Xiong Gautham Yepuri Michael Forbiteh Yi Yu Jean-Pierre Montani Zhihong Yang Xiu-Fen Ming 《Autophagy》2014,10(12):2223-2238
Impaired autophagy function and enhanced ARG2 (arginase 2)-MTOR (mechanistic target of rapamycin) crosstalk are implicated in vascular aging and atherosclerosis. We are interested in the role of ARG2 and the potential underlying mechanism(s) in modulation of endothelial autophagy. Using human nonsenescent “young” and replicative senescent endothelial cells as well as Apolipoprotein E-deficient (apoe−/−Arg2+/+) and Arg2-deficient apoe−/− (apoe−/−arg2−/−) mice fed a high-fat diet for 10 wk as the atherosclerotic animal model, we show here that overexpression of ARG2 in the young cells suppresses endothelial autophagy with concomitant enhanced expression of RICTOR, the essential component of the MTORC2 complex, leading to activation of the AKT-MTORC1-RPS6KB1/S6K1 (ribosomal protein S6 kinase, 70kDa, polypeptide 1) cascade and inhibition of PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit). Expression of an inactive ARG2 mutant (H160F) had the same effect. Moreover, silencing RPS6KB1 or expression of a constitutively active PRKAA prevented autophagy suppression by ARG2 or H160F. In senescent cells, enhanced ARG2-RICTOR-AKT-MTORC1-RPS6KB1 and decreased PRKAA signaling and autophagy were observed, which was reversed by silencing ARG2 but not by arginase inhibitors. In line with the above observations, genetic ablation of Arg2 in apoe−/− mice reduced RPS6KB1, enhanced PRKAA signaling and endothelial autophagy in aortas, which was associated with reduced atherosclerosis lesion formation. Taken together, the results demonstrate that ARG2 impairs endothelial autophagy independently of the L-arginine ureahydrolase activity through activation of RPS6KB1 and inhibition of PRKAA, which is implicated in atherogenesis. 相似文献
5.
《Autophagy》2013,9(12):2223-2238
Impaired autophagy function and enhanced ARG2 (arginase 2)-MTOR (mechanistic target of rapamycin) crosstalk are implicated in vascular aging and atherosclerosis. We are interested in the role of ARG2 and the potential underlying mechanism(s) in modulation of endothelial autophagy. Using human nonsenescent “young” and replicative senescent endothelial cells as well as Apolipoprotein E-deficient (apoe?/?Arg2+/+) and Arg2-deficient apoe?/? (apoe?/?arg2?/?) mice fed a high-fat diet for 10 wk as the atherosclerotic animal model, we show here that overexpression of ARG2 in the young cells suppresses endothelial autophagy with concomitant enhanced expression of RICTOR, the essential component of the MTORC2 complex, leading to activation of the AKT-MTORC1-RPS6KB1/S6K1 (ribosomal protein S6 kinase, 70kDa, polypeptide 1) cascade and inhibition of PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit). Expression of an inactive ARG2 mutant (H160F) had the same effect. Moreover, silencing RPS6KB1 or expression of a constitutively active PRKAA prevented autophagy suppression by ARG2 or H160F. In senescent cells, enhanced ARG2-RICTOR-AKT-MTORC1-RPS6KB1 and decreased PRKAA signaling and autophagy were observed, which was reversed by silencing ARG2 but not by arginase inhibitors. In line with the above observations, genetic ablation of Arg2 in apoe?/? mice reduced RPS6KB1, enhanced PRKAA signaling and endothelial autophagy in aortas, which was associated with reduced atherosclerosis lesion formation. Taken together, the results demonstrate that ARG2 impairs endothelial autophagy independently of the L-arginine ureahydrolase activity through activation of RPS6KB1 and inhibition of PRKAA, which is implicated in atherogenesis. 相似文献
6.
Yoshida K Tanaka T Kohno H Sakata K Kawamori T Mori H Wakabayashi K 《Histology and histopathology》2003,18(1):39-48
The modifying effects of a cyclooxygenase (cox)-2 selective inhibitor nimesulide on tongue carcinogenesis were investigated in male F344 rats initiated with 4-nitroquinoline-1-oxide (4-NQO). The cell proliferation activity measured by proliferating cell nuclear antigen (PCNA)-positive index and apoptotic index, and the immunohistochemical expression of COX-2, and inducible nitric oxide synthase (iNOS) in the tongue mucosa or neoplasms were also examined for mechanistic analysis of modifying effects of nimesulide on tongue carcinogenesis. All animals except those treated with nimesulide alone and untreated rats were given 20 ppm 4-NQO in drinking water for 8 weeks to induce tongue neoplasms. Starting 1 week after the cessation of 4-NQO exposure, rats given 4-NQO were fed the experimental diets containing nimesulide (100 and 400 ppm) for 22 weeks. At week 32, the incidence of tongue squamous cell carcinoma was significantly reduced by feeding of the diet containing 400 ppm nimesulide. Feeding of nimesulide significantly decreased polyamine content and PCNA-labeling index in tongue carcinoma. Apoptotic index in tongue carcinoma was increased by feeding of nimesulide. In addition, nimesulide feeding reduced COX-2 and iNOS expression in the tongue dysplasia and neoplasms. These results suggest that 400 ppm nimesulide in diet, when given during the promotion phase, exerts chemopreventive ability against 4-NQO-induced tongue tumorigenesis through inhibition of cell proliferation activity in conjunction with modification of COX-2 and iNOS expression of the target lesions. 相似文献
7.
8.
Anisomycin induces COX-2 mRNA expression through p38(MAPK) and CREB independent of small GTPases in intestinal epithelial cells 总被引:1,自引:0,他引:1
Cyclooxygenase (COX)-2 expression in intestinal epithelial cells is associated with colorectal carcinogenesis. COX-2 expression is induced by numerous growth factors and gastrointestinal hormones through multiple protein kinase cascades. Here, the role of mitogen activated protein kinases (MAPKs) and small GTPases in COX-2 expression was investigated. Anisomycin and sorbitol induced COX-2 expression in non-transformed, intestinal epithelial IEC-18 cells. Both anisomycin and sorbitol activated p38(MAPK) followed by phosphorylation of CREB. SB202190 and PD169316 but neither PD98059 nor U0126 blocked COX-2 expression and CREB phosphorylation by anisomycin or sorbitol. Clostridium difficile toxin B inhibition of small GTPases did not affect anisomycin-induced COX-2 mRNA expression or phosphorylation of p38MAPK and CREB but did inhibit sorbitol-dependent COX-2 expression and phosphorylation of p38MAPK and CREB. Angiotensin (Ang) II-dependent induction of COX-2 mRNA and induced phosphorylation of p38MAPK and CREB were inhibited by toxin B. Reduction of CREB protein in cells transfected with CREB siRNAs inhibited anisomycin-induced COX-2 expression. These results indicate that activation of p38MAPK signaling is sufficient for COX-2 expression in IEC-18 cells. Ang II and sorbitol require small GTPase activity for COX-2 expression via p38MAPK while anisomycin-induced COX-2 expression by p38MAPK does not require small GTPases. This places small GTPase activity down-stream of the AT1 receptor and hyperosmotic stress and up-stream of p38MAPK and CREB. 相似文献
9.
10.
研究不同铁筷子提取物对肿瘤细胞增殖及 COX-2 mRNA 表达的抑制作用。以铁筷子醇总提取物(TKZ1)、正丁醇萃取部位(TKZ2)、乙酸乙酯萃取部位(TKZ3)分别作用于 DU145、PC3、HeLa、HT-29、HepG2等肿瘤细胞,应用噻唑蓝实验(MTT 法)计算其对细胞增殖的抑制作用,应用荧光定量 PCR 技术检测TKZ1、TKZ2、TKZ3处理后的各肿瘤细胞中 COX-2 mRNA 的表达情况。结果表明:TKZ1、TKZ2、TKZ3均能显著抑制多种肿瘤细胞的增殖,与阴性对照组比较,其可以在 mRNA 水平上抑制 COX-2的表达,且呈明显的量效关系。说明铁筷子提取物对体外肿瘤细胞的增殖具有显著的抑制作用,其抗瘤机制可能与抑制肿瘤细胞中 COX-2 mRNA 的表达有关。 相似文献
11.
研究不同剂量(100、200和400mg/kg)的牛樟芝水提物(WE)、醇提后水提取物(WEE)和醇提物(EE)对酒精诱导的ICR小鼠急性肝损伤的保护作用和对Nrf2/HO-1抗氧化信号通路的影响。研究结果表明:与模型组比较,400mg/kg的WE和WEE均能显著抑制血清ALT和AST水平的升高,200mg/kg的WE和WEE分别显著降低血清ALT和AST含量。各剂量的WE、WEE和EE均能显著降低肝脏MDA含量,200和400mg/kg的WE和不同剂量的WEE均可明显提高肝脏的SOD和CAT活力。H&E染色结果表明WE、WEE和EE对酒精诱导的肝损伤均有一定的改善作用,EE处理组的效果相对较差。免疫组化染色结果表明各剂量的WE、WEE和EE均能促进Nrf2的核转位,诱导HO-1的表达,提高肝脏的抗氧化能力,对酒精诱导的急性肝损伤具有明显的保护作用。提示牛樟芝能通过调节Nrf2/HO-1抗氧化信号通路发挥解酒保肝功效。 相似文献
12.
Chunli Wei Hui Zou Ting Xiao Xiaoyan Liu Qianqian Wang Jingliang Cheng Shangyi Fu Jiangzhou Peng Xin Xie Junjiang Fu 《Journal of cellular and molecular medicine》2021,25(21):10101-10110
Thymoquinone (TQ) has been reported as an anti-tumour drug widely studied in various tumours, and its mechanism and effect of which has become a focus of current research. However, previous studies from our laboratory and other groups found that TQ showed weak anti-tumour effects in many cancer cell lines and animal models. Therefore, it is necessary to modify and optimize the structure of TQ to obtain new chemical entities with high efficiency and low toxicity as candidates for development of new drugs in treating cancer. Therefore, we designed and synthesized several TQ derivatives. Systematic analysis, including in vitro and in vivo, was conducted on a panel of triple-negative breast cancer (TNBC) cells and mouse model to demonstrate whether TQFL12, a new TQ derivative, is more efficient than TQ. We found that the anti-proliferative effect of TQFL12 against TNBC cells is significantly stronger than TQ. We also demonstrated TQFL12 affects different aspects in breast cancer development including cell proliferation, migration, invasion and apoptosis. Moreover, TQFL12 inhibited tumour growth and metastasis in cancer cell–derived xenograft mouse model, with less toxicity compared with TQ. Finally, mechanism research indicated that TQFL12 increased AMPK/ACC activity by stabilizing AMPKα, while molecular docking supported the direct interaction between TQFL12 and AMPKα. Taken together, our findings suggest that TQFL12, as a novel chemical entity, possesses a better inhibitory effect on TNBC cells and less toxicity in both in vitro and in vivo studies. As such, TQFL12 could serve as a potential therapeutic agent for breast cancer. 相似文献
13.
There is a degree of cervical relaxation in the ewe at estrus that is regulated by changes in prostaglandin synthesis, prostaglandin receptor expression, and changes in the cervical extracellular matrix. It is likely that these are regulated by changes in periovulatory hormones, particularly estradiol. This study determined the effect of estradiol benzoate on the mRNA expression of cyclooxygenase-2 (COX-2) and the prostaglandin E receptors EP2 and EP4, the concentration of cervical hyaluronan, and the proportion of smooth muscle and collagen in the cervix of the hypogonadotrophic ovariectomized ewe (Ovis aries). Ovariectomized hypogonadotrophic ewes were given 100 μg estradiol benzoate, and their cervices were collected 0, 24, and 48 h thereafter to determine the expression of cervical COX-2, EP2, and EP4 mRNA by in situ hybridization, the concentration of hyaluronan by ELISA, and the proportion of smooth muscle and collagen by Masson's trichrome staining. Estradiol benzoate increased the mRNA expression of COX-2 and EP4 within 24 h after treatment (P < 0.05), whereas EP2 mRNA, hyaluronan, and the ratio of smooth muscle to collagen did not change within 48 h after treatment. The COX-2, EP2, and EP4 mRNA expression were greatest in the smooth muscle layers (P < 0.05) and least in the luminal epithelium (P < 0.05). In conclusion, we inferred that estradiol regulates cervical COX-2 and EP4 mRNA expression and may regulate cervical relaxation via the synthesis of prostaglandin E2 and activation of the PGE2 receptors EP2 and EP4. 相似文献
14.
Induction of COX-2 protein expression by vanadate in A549 human lung carcinoma cell line through EGF receptor and p38 MAPK-mediated pathway 总被引:3,自引:0,他引:3
Vanadate is a transition metal widely distributed in the environment. It has been reported that vanadate associated with air pollution particles can modify DNA synthesis, causing cell growth arrest, and apoptosis. Moreover, vanadium exposure was also found to cause the synthesis of inflammatory cytokines, such as interleukin-1, tumor necrosis factor-alpha, and prostaglandin E(2). Here, we found that exposure of A549 human lung carcinoma cells to vanadate led to extracellular signal-regulated kinase, c-Jun NH(2)-terminal protein kinases (JNKs), p38 mitogen-activated protein kinase (p38) activation, and COX-2 protein expression in a dose-dependent manner. SB203580, a p38 MAPK inhibitor, but not PD098059 and SP600125, specific inhibitor of MKK1 and selective inhibitor of JNK, respectively, suppressed COX-2 expression. Furthermore, the epithelial growth factor (EGF) receptor specific inhibitor (PD153035) reduced vanadate-induced COX-2 expression. However, scavenging of vanadate-induced reactive oxygen species by catalase, a specific H(2)O(2) inhibitor, or DPI, an NADPH oxidase inhibitor, resulted in no inhibition on COX-2 expression. Together, we suggested that EGF receptor and p38 MAPK signaling pathway may be involved in vanadate-induced COX-2 protein expression in A549 human lung carcinoma cell line. 相似文献
15.
16.
Physiological regulation of acetyl-CoA carboxylase gene expression: effects of diet, diabetes, and lactation on acetyl-CoA carboxylase mRNA 总被引:5,自引:0,他引:5
We measured acetyl-CoA carboxylase mRNA levels in various tissues of the rat under different nutritional and hormonal states using a cDNA probe. We surveyed physiological conditions which are known to alter carboxylase activity, and thus fatty acid synthesis, to determine whether changes in the levels of carboxylase mRNA are involved. The present studies include the effects of fasting and refeeding, diabetes and insulin, and lactation on carboxylase mRNA levels. Northern blot analysis of liver RNA revealed that fasting followed by refeeding animals a fat-free (high carbohydrate) diet dramatically increased the amount of carboxylase mRNA compared to the fasted condition. These changes in the level of mRNA correspond to changes in the activity and amount of acetyl-CoA carboxylase. Acetyl-CoA carboxylase mRNA levels in epididymal fat tissue decreased upon fasting and increased to virtually normal levels after 72 h of refeeding, closely resembling the liver response. The amount of acetyl-CoA carboxylase mRNA decreased markedly in epididymal fat tissue of diabetic rats as compared to nondiabetic animals. However, 6 h after injection of insulin the mRNA level returned to that of the nondiabetic animals. Gestation and lactation also affected the levels of carboxylase mRNA in both liver and mammary gland. Maximum induction in both tissues occurred 5 days postpartum. These studies suggest that these diverse physiological conditions affect fatty acid synthesis in part by altering acetyl-CoA carboxylase gene expression. 相似文献
17.
18.
Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects 总被引:2,自引:0,他引:2
Corona G Deiana M Incani A Vauzour D Dessì MA Spencer JP 《Biochemical and biophysical research communications》2007,362(3):606-611
We investigated the anti-proliferative effects of an olive oil polyphenolic extract on human colon adenocarcinoma cells. Analysis indicated that the extract contained hydroxytyrosol, tyrosol and the various secoiridoid derivatives, including oleuropein. This extract exerted a strong inhibitory effect on cancer cell proliferation, which was linked to the induction of a G2/M phase cell cycle block. Following treatment with the extract (50 microg/ml) the number of cells in the G2/M phase increased to 51.82+/-2.69% relative to control cells (15.1+/-2.5%). This G2/M block was mediated by the ability of olive oil polyphenols (50 microg/ml) to exert rapid inhibition of p38 (38.7+/-4.7%) and CREB (28.6+/-5.5%) phosphorylation which led to a downstream reduction in COX-2 expression (56.9+/-9.3%). Our data suggest that olive oil polyphenols may exert chemopreventative effects in the large intestine by interacting with signalling pathways responsible for colorectal cancer development. 相似文献
19.
The neuromedin B receptor (Nmbr) is an important physiological regulator of spontaneous activities and stress responses through different cascades as well as its autocrine and paracrine effects. Previous studies have revealed that neuromedin B (Nmb) and its receptor signal via the Rela (also known as p65)/Il6 pathway in a mouse model of pregnancy. This study investigated the mechanism of Nmbr signaling via the Rela/p65-Il6 pathway and regulation of the concentration of intracellular free calcium ([Ca(2+)](i)) during the onset of labor in primary mouse myometrial cell cultures isolated from mice in term labor. Data demonstrated Nmbr agonist-mediated upregulation of the DNA binding activity of Rela/p65, Il6 expression, and [Ca(2+)](i) in a concentration-dependent manner. Furthermore, a significant correlation was observed between DNA binding activity of Rela/p65 and Il6 expression. Moreover, this up-regulation was blocked by Nmbr and Rela/p65 knockdown, achieved by RNA interference (RNAi) technology. No significant differences were identified in the inhibition of Il6 expression as a result of Nmbr or Rela/p65 knockdown. However, significant differences were observed between the [Ca(2+)](i) in Rela/p65-specific group and that in the Nmbr-specific small interfering RNA (siRNA)-treated groups. These data demonstrated that the Nmb/Nmbr interaction in pregnant myometrial primary cells in vitro predominantly influenced uterine activity through regulation of Il6 expression via the Rela/p65 pathway, although the effects of Nmbr on [Ca(2+)](i) involved several pathways that remain to be elucidated. 相似文献
20.
Brooks SA Connolly JE Rigby WF 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(12):7263-7271