首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的:探讨实验性自身免疫性脑脊髓炎(EAE)的视神经损害以及将其作为视神经炎模型的可能性.方法:取MOG35-55多肽和完全弗氏佐剂制备成抗原乳剂免疫C57BL/6小鼠,并在腹腔内注射2次百日咳杆菌,建立EAE模型.在EAE疾病高峰时,观察小鼠视神经炎的发生率及病理学改变.结果:模型组12只小鼠中有10只从免疫后第12天开始陆续起病,约在第17~19天达到疾病高峰,发病率为83.3%;而对照组未出现任何神经功能受损的症状.HE染色结果显示模型组的视神经组织中有大量的炎症细胞浸润,动物视神经炎的发生率为83.3%,其炎症评分为2.1±0.8分,与对照组相比均有统计学意义.LFB染色可见模型组的视神经有明显的脱髓鞘改变,病灶内可见炎症细胞浸润;而对照组小鼠的视神经未见明显异常改变.结论:借助EAE建立视神经炎模型是可行的,这为深入探讨视神经炎的发病机制提供了理想的动物平台.  相似文献   

3.
Activation of MAPK ERK1/2 has been shown to play an important role in Th1/Th2 polarization and in regulating cytokine production from APCs. The ERK family consists of two members ERK1 and ERK2, which share approximately 84% identity at the amino acid level and can compensate for each other for most functions. Despite these features, ERK1 and ERK2 do serve different functions, but there is very little information on the contribution of individual forms of ERK on innate and adaptive immune responses. In this study, we describe that ERK1(-/-) mice display a bias toward Th1 type immune response. Consistent with this observation, dendritic cells from ERK1(-/-) mice show enhanced IL-12p70 and reduced IL-10 secretion in response to TLR stimulation. Furthermore, serum from ERK1(-/-) mice had 100-fold higher total IgG2b and 10-fold higher total IgG2a and IgG1 Ab isotype titers, and enhanced levels of Ag-specific IgG2b Ab titers, compared with wild-type mice. Consistent with this enhanced Th1 bias, ERK1(-/-) mice showed enhanced susceptibility to myelin oligodendrocyte glycoprotein (MOG)35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) and developed EAE earlier, and with increased severity, compared with wild-type mice. Importantly, there was a profound skewing toward Th1 responses in ERK1(-/-) mice, with higher IFN-gamma production and lower IL-5 production in MOG35-55-primed T cells, as well as an augmentation in the MOG-specific IgG2a and IgG2b Th1 Ab isotypes. Finally, increased infiltrating cells and myelin destruction was observed in the spinal cord of ERK1(-/-) mice. Taken together, our data suggest that deficiency of ERK1 biases the immune response toward Th1 resulting in increased susceptibility to EAE.  相似文献   

4.
In experimental autoimmune encephalomyelitis, a classical model for multiple sclerosis, the cytokines provide the necessary signals to activate specific T cells for self-antigens. Gangliosides have multiple immunomodulatory activities, decreasing the lymphoproliferative responses and modulating cytokine production. Here, we tested the effects of gangliosides on the switching of Th1 to Th2 cytokine expression, in spleen cells obtained from Lewis rats during the acute phase of EAE, and after recovery from the disease. For this purpose, total RNA from spleen cells was isolated and submitted to RT-PCR to investigate Th1 (IL-2, TNF-alpha, and IFN-gamma) and Th2/Th3 (IL-10 and TGF-beta) cytokine gene expression. Results demonstrate that the group treated with gangliosides displays mild disease, with low expression of IFN-gamma mRNA and high TGF-beta mRNA expression. We conclude that the gangliosides may modulate Th1 cells by the synthesis of cytokines shifting the profile to the Th2/Th3 phenotype.  相似文献   

5.
A prominent feature of multiple sclerosis is its high incidence of onset in the third decade of life and its relatively rare onset in persons older than 50 years. In order to study age-related restriction of clinical expression, a comparative biochemical, immunological and histological study was undertaken during development of experimental autoimmune encephalomyelitis (EAE) in young (7 weeks) and middle-aged (15 months) Wistar rats. Young rats showed characteristic clinical signs 12-16 days postinduction, and then they spontaneously recuperated. In middle-aged rats, the incidence of clinical signs was significantly reduced, with a later onset of the disease. Similar biochemical and histological alterations were detected in both age groups, but they were present in a later stage in middle-aged animals. However, cellular and humoral immune responses to myelin basic protein (MBP) were observed 15 days postinduction in all EAE animals. The study of anti-MBP IgG isotype pattern in 7-week-old animals indicated a predominant Th1-type immune response during the acute stage of EAE, with antibodies predominantly recognizing the MBP 96-128 peptide. In contrast, 15-month-old animals showed a less prominent Th1 response, without any epitope dominance. The changes in immune function found in middle-aged animals may account for the different susceptibility and expression of EAE, and may also be relevant to the different clinical expression observed in multiple sclerosis with maturation.  相似文献   

6.
Five types of dopamine receptors, termed D1 to D5, have been identified to date. The D1 and D5 receptors form the D1-like group that couples with the Gαs class of G proteins, while D2, D3 and D4 form the D2-like group that couples with the Gαi class of G proteins. A D2-like-receptor (D2-like-R) antagonist L750667 induced dendritic cell (DC)-mediated Th17 differentiation. In contrast, a D1-like-R antagonist SCH23390 inhibited DC-mediated Th17 differentiation. The D1-like-Rs were expressed on both DCs and T cells, whereas D2-like-Rs were marginally expressed on CD4+CD45RA+ naïve T cells. In addition, SCH23390 had the ability to prevent experimental autoimmune encephalomyelitis (EAE) in mice. Spleen cells from EAE mice showed decreased IL-17 production, when SCH23390 was administered. Adoptive transfer of DCs treated with SCH23390 successfully prevented EAE. These findings indicate that antagonizing D1-like-Rs on DCs inhibits Th17 differentiation, thereby leading to an amelioration of EAE.  相似文献   

7.

Background

There is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has remained controversial. In this report, we compare functional differences and pathogenic potential of “monoclonal” T cell lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an IFN-γ producing Th1-like and IL-17 producing Th17-like cytokine signature.

Methods and Findings

CD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR recognizing MOG peptide 35–55 in the context of I-Ab. Adoptive transfer of Th1 cells into lymphopenic (Rag2−/−) recipients, predominantly induced “classic” paralytic EAE, whereas Th17 cells mediated “atypical” ataxic EAE in approximately 50% of the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS. While Th1 lesions contained IFN-γ, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially converting to IFN-γ producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17 cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-γ producing Th1 phenotype.

Conclusions

Our data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing IL-17 are required for the generation of atypical EAE whereas IFN-γ producing Th1 cells induce classical EAE.  相似文献   

8.
Rats primed with bovine myelin (BM) in complete Freunds adjuvant, develop acute experimental autoimmune encephalomyelitis (EAE). We have previously described that intraperitoneal administration prior to the active induction of the disease of a bovine synaptosomal fraction (BSF) and BM were effective ways of suppressing EAE. We found that both treatments diminish the incidence of the disease and reduced biochemical and histological alterations of the central nervous system (CNS). To characterize this suppression process, in this study we examined the antigen-specific immune response in animals protected from EAE. Lymph node mononuclear cells derived from sick EAE rats, as well as from those protected by BM and BSF, showed strong myelin basic protein (MBP) proliferation. Analysis of the humoral response against MBP showed a significant diminution of IgG2b anti-MBP titres in protected BM and BSF rats in contrast to sick EAE rats whose condition could be related to a diminished anti-MBP Th1 response. Finally, cells from rats protected by BSF and BM reduced the incidence of EAE when they were adoptively transferred into animals prior to active induction of the disease. These results suggest that a mechanism based on the generation of regulatory cells and immune deviation could account for the EAE suppression mediated by myelin as well as synaptosomal antigens.  相似文献   

9.
The CNS T cell repertoire was analyzed by RT-PCR, spectratyping, and nucleotide sequencing of the amplified products at different times following adoptive transfer of a CD4+, Th1, VB2+ encephalitogenic SJL/J proteolipid protein peptide 139-151-specific T cell clone. The third complementarity-determining region of TCR B chains in the spinal cord was used as an indicator of T cell heterogeneity. Spectratypic analysis revealed that a single peak corresponding to the third complementarity-determining region of the initiating T cell clone predominated during the acute phase. During recovery and relapse the complexity of the spectratype increased. DNA sequence analysis revealed that the donor clone predominated at the acute phase. By the first relapse the donor clone, although represented most frequently, was a minority of the total. Spectratypic analysis of the same samples for several other VB families revealed their presence during acute disease or relapses but, with the exception of VB17, their absence during the recovery stage.  相似文献   

10.
11.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated disease of the central nervous system. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report that SAP-transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35-55 in complete Freund's adjuvant, SAP-transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However, in SAP-Knockout mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild type to SAP-transgenic mice, or transfer of SAP-transgenic Ag-restimulated T cells to control mice, induced milder EAE. T cells from MOG-primed SAP-transgenic mice showed weak proliferative responses. Furthermore, in SAP-transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of interleukin-2 stimulated by P-selectin and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin.  相似文献   

12.
Experimental autoimmune encephalomyelitis (EAE) is an inducible autoimmune disease widely used as a model of the acute/relapsing stage of multiple sclerosis. In the present study we examined the effect of acute immunosuppression induced by total body irradiation (TBI) (900 to 1100 centigray (cGy)) or by a single high dose of cyclophosphamide (CY) (300 mg/kg), followed by syngeneic bone marrow transplantation (SBMT), on the development of EAE in SJL/J mice. EAE was induced in SJL/J mice by immunization with spinal cord homogenate in adjuvant. Treatment with TBI (900 cGy) and SBMT on day 6 postimmunization caused a delayed onset and a marked reduction in the incidence and severity of EAE. A higher dose of irradiation (1100 cGy) or the administration of CY followed by SBMT completely abrogated the development of paralysis. None of the 21 mice treated with CY and SBMT, and only 1 of 7 mice treated with TBI (1100 cGy) and SBMT developed clinical signs of EAE during a period of 3 months. Furthermore, mice treated with CY and SBMT became resistant to rechallenge with the same encephalitogenic inoculum. In addition, the lymphocytes obtained from these mice did not proliferate in vitro in response to myelin basic protein or tuberculin-purified protein derivative, unlike lymphocytes from immunized but untreated animals. This absence of reactivity was not associated with alterations in the proportion of the L3T4 and Lyt-2 T-cell subsets nor with a loss in T cell competence as evidenced by the full response of lymphocytes to the T cell mitogen Con A and to a nonrelevant Ag (OVA). Our results indicate that the elimination of effector lymphocytes either by myeloablative doses of CY or ionizing irradiation followed by rescue with SBMT inhibits the development of the autoimmune process in EAE and leads to induction of tolerance to the immunizing Ag by newly developing lymphocytes. This approach of combining immunoablation and reconstitution with autologous bone marrow transplantation may be applicable in the treatment of life-threatening neurologic autoimmune diseases.  相似文献   

13.
Multiple sclerosis is characterized by perivascular CNS infiltration of myelin-specific CD4(+) T cells and activated mononuclear cells. TCR transgenic mice on the SJL background specific for proteolipid protein (PLP)(139-151) develop a high incidence of spontaneous experimental autoimmune encephalomyelitis (sEAE). We examined the intrinsic mechanisms regulating onset and severity of sEAE. CD4(+) T cells isolated from the cervical lymph nodes, but not spleens, of diseased 5B6 transgenic mice are hyperactivated when compared with age-matched healthy mice and produce both IFN-gamma and IL-17, indicating that the cervical lymph node is the initial peripheral activation site. The age-associated development of sEAE correlates with a decline in both the functional capacity of natural regulatory T cells (nTregs) and in PLP(139-151)-induced IL-10 production and a concomitant increase in IL-17 production. Anti-CD25-induced inactivation of nTregs increased the incidence and severity of sEAE. Conversely, induction of peripheral tolerance via the i.v. injection of PLP(139-151)-pulsed, ethylcarbodiimide-fixed APCs (PLP(139-151)-SP) inhibited the development of clinical disease concomitant with increased production of IL-10 and conversion of Foxp3(+) Tregs from CD4(+)CD25(-) progenitors. These data indicate that heterogeneous populations of Tregs regulate onset of sEAE, and that induction of peripheral tolerance can be exploited to prevent/treat spontaneous autoimmune disease.  相似文献   

14.
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3(+) regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1(-/-) mice; however, more severe disease was induced in EBI3(-/-)Rag1(-/-) mice than in Rag1(-/-) mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4(+)Foxp3(+) Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3(-/-) mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.  相似文献   

15.
We induced experimental autoimmune encephalomyelitis (EAE) inGM2/GD2 synthase knockout mice (GM2/GD2–/–), whichcannot synthesize complex gangliosides, such as GM1, GD1a, GD1b,GT1b, and GQ1b, to investigate the roles of complex gangliosidesin the pathogenesis of this disease. We used myelin-oligodendrocyteglycoprotein (MOG) as an immunogen. In active immunization EAE,the severity of clinical score was not different but the diseaseonset was significantly delayed in GM2/GD2–/– comparedwith those in wild-type mice. When we transferred MOG-reactiveT cells from GM2/GD2–/– or wild-type mice to wild-typemice, no significant differences were observed between the twogroups. In contrast, when we transferred MOG-reactive T cellsfrom wild-type mice to GM2/GD2–/– or to wild-typemice, the onset of EAE in GM2/GD2–/– mice was delayed.The recall response of MOG-specific T cells, the function ofantigen presenting cells, or the expression of several adhesionmolecules in the endothelium were not significantly differentbetween GM2/GD2–/– and wild-type mice. On the otherhand, quantitative analysis of cellular infiltration in thecentral nervous system (CNS) on day 9 of active immunizationEAE showed that the CD4+ cell number in the CNS isolated fromGM2/GD2–/– mice was significantly less than thatfrom wild-type mice. It indicated that the delayed onset ofEAE in GM2/GD2–/– mice was due to the delay of themigration of pathogenic T cells into the CNS. Thus, the complexgangliosides may be involved in the T cell–endothelialcell interaction in the pathogenetic process of EAE.  相似文献   

16.
Fatty acid-binding proteins (FABPs) act as intracellular receptors for a variety of hydrophobic compounds, enabling their diffusion within the cytoplasmic compartment. Recent studies have demonstrated the ability of FABPs to simultaneously regulate metabolic and inflammatory pathways. We investigated the role of adipocyte FABP and epithelial FABP in the development of experimental autoimmune encephalomyelitis to test the hypothesis that these FABPs impact adaptive immune responses and contribute to the pathogenesis of autoimmune disease. FABP-deficient mice exhibited a lower incidence of disease, reduced clinical symptoms of experimental autoimmune encephalomyelitis and dramatically lower levels of proinflammatory cytokine mRNA expression in CNS tissue as compared with wild-type mice. In vitro Ag recall responses of myelin oligodendrocyte glycoprotein 35-55-immunized FABP(-/-) mice showed reduced proliferation and impaired IFN-gamma production. Dendritic cells deficient for FABPs were found to be poor producers of proinflammatory cytokines and Ag presentation by FABP(-/-) dendritic cells did not promote proinflammatory T cell responses. This study reveals that metabolic-inflammatory pathway cross-regulation by FABPs contributes to adaptive immune responses and subsequent autoimmune inflammation.  相似文献   

17.
18.
It has recently been proposed that experimental autoimmune encephalomyelitis, once considered the classical Th1 disease, is predominantly Th17 driven. In this study we show that myelin-reactive Th1 preparations devoid of contaminating IL-17(+) cells are highly pathogenic. In contrast, Th17 preparations lacking IFN-gamma(+) cells do not cause disease. Our key observation is that only Th1 cells can access the noninflamed CNS. Once Th1 cells establish the experimental autoimmune encephalomyelitis lesion, Th17 cells appear in the CNS. These data shed important new light on the ability of Th1 vs Th17 cells to access inflamed vs normal tissue. Because the IL-17-triggered release of chemokines by stromal cells could attract many other immune cells, allowing Th17 cells to access the tissues only under conditions of inflammation may be a key process limiting (auto)immune pathology. This has major implications for the design of therapeutic interventions, many of which are now aiming at Th17 rather than Th1 cells.  相似文献   

19.
Skeletal unloading induces trabecular bone loss in loaded bones. The tail-suspended mouse model simulates conditions associated with lack of mechanical stress such as space flight for the loaded bones. In such a model, the tail supports the body weight. The forelimbs are normally loaded and the movement of its hindlimbs is free without weight bearing. Histomorphometric analyses of the murine tibiae of the elevated hindlimbs show that trabecular bone volume rapidly diminishes within one week and stabilizes at that level in the subsequent week of tail suspension. Two-week reloading after one-week unloading completely restores trabecular bone volume, but this does not happen after two-week unloading. Unloading for one or two weeks significantly reduces bone formation rate and increases both the osteoclast surface and number compared with age-matched ground control mice. Subsequent reloading restores reduced bone formation and suppresses increased bone resorption. In bone marrow cell cultures, the numbers of alkaline phosphatase (ALP)-positive colony-forming units-fibroblastic (CFU-f) and mineralized nodules are significantly reduced, but the numbers of adherent marrow cells and total CFU-f are unaltered after tail suspension. On the other hand, subsequent reloading increases the number of adherent marrow cells. Unloading for one week significantly increases the number of tartrate-resistant acid phosphatase (TRAP)- positive multinucleated cells compared with the control level. Our data demonstrate that tail suspension in mice reduces trabecular bone formation, enhances bone resorption, and is closely associated with the formation of mineralized nodules and TRAP-positive multinucleated cells in bone marrow cultures obtained from tibiae. Two-week reloading restores bone volume reduced after one-week unloading, but does not after two-week unloading. The tail-suspended model provides a unique opportunity to evaluate the physiological and cellular mechanisms of the skeletal response to unloading and reloading.  相似文献   

20.
Multiple sclerosis (MS) is a severe central nervous system disease. Experimental autoimmune encephalomyelitis (EAE) mimics MS in mice. We report that spontaneous development of EAE in RAG-1-deficient mice transgenic for a myelin basic protein (MBP)-specific TCR (TgMBP+/RAG-1-/-) requires expression of the T cell costimulatory molecule CD28. Surprisingly, T cells from CD28-/-TgMBP+/RAG-1-/- mice proliferate and produce IL-2 in response to MBP1-17 peptide in vitro, excluding clonal anergy as the mechanism of CD28-regulated pathogenesis. Proliferation of autoaggressive T cells was dependent on the concentration of the MBP peptide, as was the development of MBP-induced EAE in CD28-deficient PL/J mice. These results provide the first genetic evidence that CD28 costimulation is crucial for MBP-specific T cell activation in vivo and the initiation of spontaneous EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号