首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractalkine (FKN, CX3CL1) is highly expressed in a majority of malignant solid tumours. Fractalkine is the only known ligand for CX3CR1. In this study, we performed an analysis to determine the effects of fractalkine/CX3CR1 on modulating apoptosis and explored the related mechanisms. The expression of fractalkine/CX3CR1 was detected by immunohistochemistry and western blotting. The levels of AKT/p‐AKT, BCL‐xl, and BCL‐2 were detected by western blotting. Then, the effects of exogenous and endogenous fractalkine on the regulation of tumour apoptosis and proliferation were investigated. The mechanism of fractalkine/CX3CR1 on modulating apoptosis in cancer cells through the activation of AKT/NF‐κB/p65 signals was evaluated. The effect of fractalkine on regulating cell cycle distribution was also tested. Fractalkine, AKT/p‐AKT, and apoptotic regulatory proteins BCL‐xl and BCL‐2 were highly expressed in human pancreatic cancer tissues. In vitro, fractalkine/CX3CR1 promoted proliferation and mediated resistance to apoptosis in pancreatic cancer cells. The antiapoptotic effect of fractalkine was induced by the activation of AKT/NF‐κB/p65 signalling in pancreatic cancer cells. The NF‐κB/p65 contributes to promote the expressions of BCL‐xl and BCL‐2 and reduce caspase activity, thereby inhibiting apoptotic processes. Treatment with fractalkine resulted in the enrichment of pancreatic cancer cells in S phase with a concomitant decrease in the number of cells in G1 phase. The present study demonstrated the function of fractalkine in the activation of the AKT/NF‐κB/p65 signalling cascade and mediation of apoptosis resistance in pancreatic cancer cells. Fractalkine/CX3CR1 could serve as a diagnostic marker and as a potential target for chemotherapy in early stage pancreatic cancer. Pancreatic cancer is characterized by local recurrence, neural invasion, or distant metastasis. The present study demonstrated the overexpression of fractalkine/CX3CR1 in pancreatic cancer tissues, indicating its important role in the tumourigenesis of pancreatic cancer, and suggested that the overexpression of fractalkine/CX3CR1 could serve as a diagnostic marker for pancreatic cancer. Moreover, we reveal the mechanism that fractalkine functions on the activation of the AKT/NF‐κB/p65 signalling cascade and regulation of the antiapoptosis process in pancreatic cancer cells. Fractalkine/CX3CR1 could serve as an effective therapeutic target of chemotherapeutic and biologic agents in early stage pancreatic cancer.  相似文献   

2.
信号转导和转录活化因子3 (STAT3)与趋化因子CX3C配体1 (Fractalkine/CX3CL1)在血管炎症和损伤中起重要作用,为了探讨STAT3是否通过CX3CL1促进血管内皮细胞增殖和迁移,在血管内皮细胞(HUVEC)中过表达或敲降STAT3,通过quantitative real-time PCR、Western blotting实验确定STAT3对CX3CL1表达的影响。构建含有STAT3结合位点及突变STAT3结合位点的CX3CL1启动子荧光素酶报告基因质粒,利用荧光素酶活性分析实验研究STAT3对CX3CL1启动子转录活性的作用。利用MTT实验检测过表达或敲降STAT3或CX3CL1对血管内皮细胞增殖率的影响。利用划痕实验检测过表达或敲降STAT3或CX3CL1对血管内皮细胞迁移率的影响。结果显示,过表达STAT3可以促进CX3CL1表达,敲降STAT3可以使CX3CL1表达下调。STAT3可以直接结合到CX3CL1的启动子促进其转录激活,其促进作用依赖于CX3CL1启动子上的GAS位点。敲降STAT3可以抑制血管内皮细胞的迁移,过表达CX3CL1拮抗该抑制作用。总结得出,STAT3通过结合到CXCL1启动子促进CX3CL1转录与表达进而促进血管内皮的增殖与迁移。  相似文献   

3.
目的:观察fractalkine(FKN)对体外培养的大鼠肺动脉平滑肌细胞(PASMCs)增殖的影响。方法:体外培养大鼠PASMCs,加入不同浓度(10-^10、10-^9和10-^8 mol/L)的FKN处理12h、24h和48h,采用四唑盐(MTT)法检测细胞增殖,流式细胞术(FCM)检测细胞周期。结果:MTT试验显示FKN显著促进大鼠PASMCs增殖,此作用呈浓度依赖性。FCM分析显示FKN使S期细胞比例和增殖指数P1值增加。FKN处理PASMCs 12h后,其S期细胞比例和H值即出现增加,24h达高峰。结论:FKN呈浓度依赖方式促进大鼠PASMCs增殖。  相似文献   

4.
Zhang M  Xu G  Liu W  Ni Y  Zhou W 《PloS one》2012,7(4):e35446

Background

Excessive exposure to light enhances the progression and severity of some human retinal degenerative diseases. While retinal microglia are likely to be important in neuron damage associated with these diseases, the relationship between photoreceptor damage and microglial activation remains poorly understood. Some recent studies have indicated that the chemokine fractalkine is involved in the pathogenesis of many neurodegenerative diseases. The present study was performed to investigate the cross-talk between injured photoreceptors and activated retinal microglia, focusing on the role of fractalkine and its receptor CX3CR1 in light-induced photoreceptor degeneration.

Methodology/Principal Findings

Both in vivo and in vitro experiments were involved in the research. In vivo, Sprague–Dawley rats were exposed to blue light for 24 hours. In vitro, the co-culture of primary retinal microglia and a photoreceptor cell line (661W cell) was exposed to blue light for five hours. Some cultures were pretreated by the addition of anti-CX3CR1 neutralizing antibody or recombinant fractalkine. Expression of fractalkine/CX3CR1 and inflammatory cytokines was detected by immunofluorescence, real-time PCR, Western immunoblot analysis, and ELISA assay. TUNEL method was used to detect cell apoptosis. In addition, chemotaxis assay was performed to evaluate the impact of soluble fractalkine on microglial migration. Our results showed that the expression of fractalkine that was significantly upregulated after exposure to light, located mainly at the photoreceptors. The extent of photoreceptor degeneration and microglial migration paralleled the increased level of fractalkine/CX3CR1. Compared with the control, the expression of inflammatory cytokines was significantly downregulated in the anti-CX3CR1 neutralizing antibody-treated group, and the number of photoreceptors was also well preserved. The addition of recombinant full-length fractalkine or soluble fractalkine resulted in fewer TUNEL-positive photoreceptors and an increased number of migratory microglia respectively.

Conclusions/Significance

These findings demonstrate that fractalkine/CX3CR1 interaction may play an important role in the photoreceptor-microglia cross-talk in light-induced photoreceptor degeneration.  相似文献   

5.
Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray-based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth.  相似文献   

6.
Human fractalkine (CX3CL1), a delta-chemokine, is implicated in the mediation of multiple cell functions. In addition to serving as a chemotactic factor for mononuclear cell subtypes, membrane-bound fractalkine may promote viral infection by interacting with virions that encode putative fractalkine-binding proteins. Fractalkine expression in normal epithelial tissues studied to date is either constitutive or is upregulated with inflammation. In salivary glands, the expression of fractalkine is unknown. Moreover, salivary glands are a major site for the persistent and productive infection by human herpesvirus (HHV)-7, which encodes two putative fractalkine-binding gene products, U12 and U51. Surprisingly, the cellular distribution of HHV-7 in major salivary glands has not been explored. We therefore determined by immunohistochemistry the cellular localization of fractalkine in three different salivary glands: parotid, submandibular, and labial glands. Fractalkine expression was highly variable, ranging from high to undetectable levels. We further examined the association of fractalkine with inflammatory cell infiltration or HHV-7 infection of salivary epithelial cells. Inflammatory cells were always adjacent to epithelial cells expressing fractalkine, consistent with a function of fractalkine in inflammatory cell recruitment and/or retention in salivary glands. In contrast, HHV-7-infected epithelial cells did not always express fractalkine, suggesting that fractalkine may not be an absolute requirement for viral entry.  相似文献   

7.
Fractalkine/CX3C-chemokine ligand 1 is expressed as a membrane-spanning adhesion molecule that can be cleaved from the cell surface to produce a soluble chemoattractant. Within the vasculature, fractalkine is known to be generated by endothelial cells, but to date there are no reports describing its expression by smooth muscle cells (SMC). In this study we demonstrate that IFN-gamma and TNF-alpha, but not IL-1beta, cooperate synergistically to induce fractalkine mRNA and protein expression in cultured aortic SMC. We also report the release of functional, soluble fractalkine from the membranes of stimulated SMC. This release is inhibited by the zinc metalloproteinase inhibitor batimastat, resulting in the accumulation of membrane-associated fractalkine on the SMC surface. Therefore, an SMC-derived metalloproteinase activity is involved in fractalkine shedding. While soluble fractalkine present in SMC-conditioned medium is capable of inducing calcium transients in cells expressing the fractalkine receptor (CX3CR1), blocking experiments using neutralizing Abs reveal that it can be inactivated without affecting the chemotactic activity of SMC-conditioned media on monocytes. However, membrane-bound fractalkine plays a major role in promoting adhesion of monocytic cells to activated SMC. This fractalkine-mediated adhesion is further enhanced in the presence of batimastat, indicating that shedding of fractalkine from the cell surface down-regulates the adhesive properties of SMC. Hence, during vascular inflammation, the synergistic induction of fractalkine by IFN-gamma and TNF-alpha together with its metalloproteinase-mediated cleavage may finely control the recruitment of monocytes to SMC within the blood vessel wall.  相似文献   

8.
Epithelial ovarian carcinoma (EOC) is a deadly disease, and little is known about the mechanisms underlying its metastatic progression. Using human specimens and established cell lines, we determined that the G-protein-coupled seven-transmembrane fractalkine receptor (CX(3)CR1) is expressed in primary and metastatic ovarian carcinoma cells. Ovarian carcinoma cells robustly migrated toward CX(3)CL1, a specific ligand of CX(3)CR1, in a CX(3)CR1-dependent manner. Silencing of CX(3)CR1 reduced migration toward human ovarian carcinoma ascites fluid by approximately 70%. Importantly, adhesion of ovarian carcinoma cells to human peritoneal mesothelial cells was dependent on CX(3)CL1/CX(3)CR1 signaling. In addition, CX(3)CL1 was able to induce cellular proliferation. Together, our data suggest that the fractalkine network may function as a major contributor to the progression of EOC, and further attention to its role in the metastasis of this deadly malignancy is warranted.  相似文献   

9.
Several neurodegenerative disorders are associated with evidence of inflammation, one feature of which is increased activation of microglia, the most likely cellular source of inflammatory cytokines like interleukin-1β. It is now recognized that interaction of microglia with other cells contributes to maintenance of microglia in a quiescent state and the complementary distribution of the chemokine, fractalkine (CX3CL1) on neurons and its receptor (CX3CR1) on microglia, suggests that this interaction may play a role in modulating microglial activation. Here we demonstrate that both soluble and membrane-bound fractalkine attenuate lipopolysaccharide-induced microglial activation in vitro. We also show that fractalkine expression is reduced in the brain of aged rats and this is accompanied by an age-related increase in microglial activation. Treatment of aged rats with fractalkine attenuates the age-related increase in microglial activation and the evidence indicates that fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway is required to maintain microglia in a quiescent state both in vivo and in vitro .  相似文献   

10.
Molecular analyses of the chemokine fractalkine and its receptor CX3C-R1 in the rat brain have revealed a striking polarization: fractalkine is expressed constitutively in neurons and is up-regulated by TNF-alpha and IL-1beta in astrocytes. Expression of its specific receptor, CX3C-R1, is restricted to astrocytes and microglia. We have analyzed the functional correlates of this expression and demonstrate that fractalkine induces microglial cell migration and activation. However, the activity of this chemokine on astrocytes may also be highly relevant in inducing astrocyte-microglia cell interactions through cytokine/mediator release leading to microglial activation.  相似文献   

11.
Fractalkine is a novel multidomain protein expressed on the surface of activated endothelial cells. Cells expressing the chemokine receptor CX3CR1 adhere to fractalkine with high affinity, but it is not known if adherence requires G-protein activation and signal transduction. To investigate the cell adhesion properties of fractalkine, we created mutated forms of CX3CR1 that have little or no ability to transduce intracellular signals. Cells expressing signaling-incompetent forms of CX3CR1 bound rapidly and with high affinity to immobilized fractalkine in both static and flow assays. Video microscopy revealed that CX3CR1-expressing cells bound more rapidly to fractalkine than to VCAM-1 (60 versus 190 ms). Unlike VCAM-1, fractalkine did not mediate cell rolling, and after capture on fractalkine, cells did not dislodge. Finally, soluble fractalkine induced intracellular calcium fluxes and chemotaxis, but it did not activate integrins. Taken together these data provide strong evidence that CX3CR1, a seven-transmembrane domain receptor, mediates robust cell adhesion to fractalkine in the absence of G-protein activation and suggest a novel role for this receptor as an adhesion molecule.  相似文献   

12.
CX3CR1 tyrosine sulfation enhances fractalkine-induced cell adhesion   总被引:6,自引:0,他引:6  
Fractalkine is a unique CX(3)C chemokine/mucin hybrid molecule that functions like selectins in inducing the capture of receptor-expressing cells. Because of the importance of tyrosine sulfation for ligand binding of the selectin ligand PSGL1, we tested the role of tyrosine sulfation for CX(3)CR1 function in cell adhesion. Tyrosine residues 14 and 22 in the N terminus of CX(3)CR1 were mutated to phenylalanine and stably expressed on K562 cells. Cells expressing CX(3)CR1-Y14F were competent in signal transduction but defective in capture by and firm adhesion to immobilized fractalkine under physiologic flow conditions. In static binding assays, CX(3)CR1-Y14F mutants had a 2-4-fold decreased affinity to fractalkine compared with wild type CX(3)CR1. By surface plasmon resonance measurements of fractalkine binding to biosensor chip-immobilized cell membranes, CX(3)CR1-Y14F mutants had a 100-fold decreased affinity to fractalkine. CX(3)CR1-expressing cell membranes treated with arylsulfatase to desulfate tyrosine residues also showed a 100-fold decreased affinity for fractalkine. Finally, synthesized, sulfated N-terminal CX(3)CR1 peptides immobilized on biosensor chips showed a higher affinity for fractalkine than non-sulfated peptides. Thus, we conclude that sulfation of tyrosine 14 enhances the function of CX(3)CR1 in cell capture and firm adhesion. Further, tyrosine sulfation may represent a general mechanism utilized by molecules that function in the rapid capture of circulating leukocytes.  相似文献   

13.
Fractalkine is a unique chemokine that combines properties of both chemoattractants and adhesion molecules. Fractalkine mRNA expression has been observed in the intestine. However, the role of fractalkine in the healthy intestine and during inflammatory mucosal responses is not known. Studies were undertaken to determine the expression and function of fractalkine and the fractalkine receptor CX3CR1 in the human small intestinal mucosa. We identified intestinal epithelial cells as a novel source of fractalkine. The basal expression of fractalkine mRNA and protein in the intestinal epithelial cell line T-84 was under the control of the inflammatory mediator IL-1beta. Fractalkine was shed from intestinal epithelial cell surface upon stimulation with IL-1beta. Fractalkine localized with caveolin-1 in detergent-insoluble glycolipid-enriched membrane microdomains in T-84 cells. Cellular distribution of fractalkine was regulated during polarization of T-84 cells. A subpopulation of isolated human intestinal intraepithelial lymphocytes expressed the fractalkine receptor CX3CR1 and migrated specifically along fractalkine gradients after activation with IL-2. Immunohistochemistry demonstrated fractalkine expression in intestinal epithelial cells and endothelial cells in normal small intestine and in active Crohn's disease mucosa. Furthermore, fractalkine mRNA expression was significantly up-regulated in the intestine during active Crohn's disease. This study demonstrates that fractalkine-CX3CR1-mediated mechanism may direct lymphocyte chemoattraction and adhesion within the healthy and diseased human small intestinal mucosa.  相似文献   

14.
A newly identified CX3C-chemokine, fractalkine, expressed on activated endothelial cells plays an important role in leucocyte adhesion and migration. Co-immobilized fractalkine with fibronectin or intercellular adhesion molecule-1 enhanced adhesion of THP-1 cells, which express the fractalkine receptor (CX3CR1), compared with that observed for each alone. That adherence was fractalkine-dependent and was confirmed in blocking studies. However, soluble fractalkine induced little chemotaxis in THP-1 cells in comparison to monocyte chemotactic protein-1 (MCP-1), which induced a strong chemotactic response. Moreover, the membrane form of fractalkine expressed on ECV304 cells reduced MCP-1 mediated chemotaxis of THP-1 cells. These results indicate that fractalkine may function as an adhesion molecule between monocytes and endothelial cells rather than as a chemotactic factor.  相似文献   

15.
Fractalkine-mediated endothelial cell injury by NK cells   总被引:23,自引:0,他引:23  
Endothelial cells (ECs) are primary targets of immunological attack, and their injury can lead to vasculopathy and organ dysfunction in vascular leak syndrome and in rejection of allografts or xenografts. A newly identified CX3C-chemokine, fractalkine, expressed on activated ECs plays an important role in leukocyte adhesion and migration. In this study we examined the functional roles of fractalkine on NK cell activity and NK cell-mediated endothelial cell injury. Freshly separated NK cells expressed the fractalkine receptor (CX3CR1) determined by FACS analysis and efficiently adhered to immobilized full-length fractalkine, but not to the truncated forms of the chemokine domain or mucin domain, suggesting that fractalkine functions as an adhesion molecule on the interaction between NK cells and ECs. Soluble fractalkine enhanced NK cell cytolytic activity against K562 target cells in a dose- and time-dependent manner. This enhancement correlated well with increased granular exocytosis from NK cells, which was completely inhibited by the G protein inhibitor, pertussis toxin. Transfection of fractalkine cDNA into ECV304 cells or HUVECs resulted in increased adhesion of NK cells and susceptibility to NK cell-mediated cytolysis compared with control transfection. Moreover, both enhanced adhesion and susceptibility of fractalkine-transfected cells were markedly suppressed by soluble fractalkine or anti-CX3CR1 Ab. Our results suggest that fractalkine plays an important role not only in the binding of NK cells to endothelial cells, but also in NK cell-mediated endothelium damage, which may result in vascular injury.  相似文献   

16.

Background

Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium.

Methods

Fractalkine was measured in LV of 28–32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation.

Results

LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery.

Conclusions

Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.  相似文献   

17.
Generation and analysis of mice lacking the chemokine fractalkine   总被引:11,自引:0,他引:11       下载免费PDF全文
Fractalkine (CX(3)CL1) is the first described chemokine that can exist either as a soluble protein or as a membrane-bound molecule. Both forms of fractalkine can mediate adhesion of cells expressing its receptor, CX(3)CR1. This activity, together with its expression on endothelial cells, suggests that fractalkine might mediate adhesion of leukocytes to the endothelium during inflammation. Fractalkine is also highly expressed in neurons, and its receptor, CX(3)CR1, is expressed on glial cells. To determine the biologic role of fractalkine, we used targeted gene disruption to generate fractalkine-deficient mice. These mice did not exhibit overt behavioral abnormalities, and histologic analysis of their brains did not reveal any gross changes compared to wild-type mice. In addition, these mice had normal hematologic profiles except for a decrease in the number of blood leukocytes expressing the cell surface marker F4/80. The cellular composition of their lymph nodes did not differ significantly from that of wild-type mice. Similarly, the responses of fractalkine(-/-) mice to a variety of inflammatory stimuli were indistinguishable from those of wild-type mice.  相似文献   

18.
Fractalkine (CX3CL1) is an unusual member of the chemokine family that is synthesized with its chemokine domain at the end of a mucin-rich, transmembrane stalk. This membrane-bound localization allows fractalkine to function as an adhesion molecule for cells bearing its receptor, CX3CR1. In addition, fractalkine can be proteolytically released from the cell surface, generating a soluble molecule that functions as a chemoattractant similar to the other members of the chemokine family. In this study, we have examined the mechanisms that regulate the conversion between these two functionally distinct forms of fractalkine. We demonstrate that under normal conditions fractalkine is synthesized as an intracellular precursor that is rapidly transported to the cell surface where it becomes a target for metalloproteinase-dependent cleavage that causes the release of a fragment containing the majority of the fractalkine extracellular domain. We show that the cleavage of fractalkine can be markedly enhanced by stimulating cells with phorbol 12-myristate 13-acetate (PMA), and we identify tumor necrosis factor-alpha converting enzyme (TACE; ADAM17) as the protease responsible for this PMA-induced fractalkine release. In addition, we provide data showing that TACE-mediated fractalkine cleavage occurs at a site distinct from the dibasic juxtamembrane motif that had been suggested previously based on protein sequence homologies. The identification of TACE as a major protease responsible for the conversion of fractalkine from a membrane-bound adhesion molecule to a soluble chemoattractant will provide new information for understanding the physiological function of this chemokine.  相似文献   

19.
Fractalkine/CX3C ligand 1 and its receptor CX3CR1 are known to mediate both cell adhesion and cell migration. Here we show that CX3CR1 defines peripheral blood cytotoxic effector lymphocytes commonly armed with intracellular perforin and granzyme B, which include NK cells, gammadelta T cells, and terminally differentiated CD8(+) T cells. In addition, soluble fractalkine preferentially induced migration of cytotoxic effector lymphocytes. Furthermore, interaction of cytotoxic effector lymphocytes with membrane-bound fractalkine promoted subsequent migration to the secondary chemokines, such as macrophage inflammatory protein-1beta/CC ligand 4 or IL-8/CXC ligand 8. Thus, fractalkine expressed on inflamed endothelium may function as a vascular regulator for cytotoxic effector lymphocytes, regardless of their lineage and mode of target cell recognition, through its ability to capture them from blood flow and to promote their emigration in response to other chemokines.  相似文献   

20.
The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia   总被引:12,自引:0,他引:12  
Fractalkine is a CX3C-family chemokine, highly and constitutively expressed on the neuronal cell surface, for which a clear CNS physiological function has yet to be determined. Its cognate receptor, CX3CR-1, is constitutively expressed on microglia, the brain-resident macrophages; however, these cells do not express fractalkine. We now show that treatment of microglia with fractalkine maintains cell survival and inhibits Fas ligand-induced cell death in vitro. Biochemical characterization indicates that this occurs via mechanisms that may include 1) activation of the phosphatidylinositol-3 kinase/protein kinase B pathway, resulting in phosphorylation and blockade of the proapoptotic functions of BAD; 2) up-regulation of the antiapoptotic protein Bcl-xL; and 3) inhibition of the cleavage of BH3-interacting domain death agonist (BID). The observation that fractalkine serves as a survival factor for primary microglia in part by modulating the protein levels and the phosphorylation status of Bcl-2 family proteins reveals a novel physiological role for chemokines. These results, therefore, suggest that the interaction between fractalkine and CX3CR-1 may play an important role in promoting and preserving microglial cell survival in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号