首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Histone deacetylases (HDACs) are negative regulators of gene expression and have been implicated in tumorigenesis and tumor progression. Therefore, HDACs are promising targets for antitumor drugs. However, the relevant isoforms of the 18 members encompassing HDAC family have not been identified. Studies utilizing either gene targeting or knockdown approaches reveal both specific and redundant functions of the closely related class I deacetylases HDAC1 and HDAC2 in the control of proliferation and differentiation. Combined ablation of HDAC1 and HDAC2 in different cell types led to a severe proliferation defects or enhanced apoptosis supporting the idea that both enzymes are relevant targets for tumor therapy. In a recent study on the role of HDAC1 in teratoma formation we have reported a novel and surprising function of HDAC1 in tumorigenesis. In this tumor model HDAC1 attenuates proliferation during teratoma formation. In the present work we discuss new findings on redundant and unique functions of HDAC1 and HDAC2 as regulators of proliferation and tumorigenesis and potential implications for applications of HDAC inhibitors as therapeutic drugs.Key words: tumor therapy, HDAC inhibitor, teratoma, chromatin, epigenetics, proliferation, histone acetylation, tumorigenesis  相似文献   

5.
HDAC inhibitors in HIV   总被引:1,自引:0,他引:1  
Combination antiretroviral therapy (cART) has led to a very substantial reduction in morbidity and mortality in HIV-infected patients; however, cART alone is unable to cure HIV and therapy is lifelong. Therefore, a new strategy to cure HIV is urgently needed. There is now a concerted effort from scientists, clinicians and funding agencies to identify ways to achieve either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells). Multiple strategies aiming at achieving a cure for HIV are currently being investigated, including both pharmacotherapy and gene therapy. In this review, we will review the rationale as well as in vitro and clinical trial data that support the role of histone deacetylase inhibitors as one approach to cure HIV.  相似文献   

6.
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage‐dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co‐repressor complex function, increased levels of c‐Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.  相似文献   

7.
8.
Parasitic diseases cause significant global morbidity and mortality, particularly in underdeveloped regions of the world. Malaria alone causes ~800000 deaths each year, with children and pregnant women being at highest risk. There is no licensed vaccine available for any human parasitic disease and drug resistance is compromising the efficacy of many available anti-parasitic drugs. This is driving drug discovery research on new agents with novel modes of action. Histone deacetylase (HDAC) inhibitors are being investigated as drugs for a range of diseases, including cancers and infectious diseases such as HIV/AIDS, and several parasitic diseases. This review focuses on the current state of knowledge of HDAC inhibitors targeted to the major human parasitic diseases malaria, schistosomiasis, trypanosomiasis, toxoplasmosis and leishmaniasis. Insights are provided into the unique challenges that will need to be considered if HDAC inhibitors are to be progressed towards clinical development as potential new anti-parasitic drugs.  相似文献   

9.
10.
《Autophagy》2013,9(8):1403-1414
We previously reported that inhibition of autophagy significantly augmented the anticancer activity of the histone deacetylase (HDAC) inhibitor vorinostat (VOR) through a cathepsin D-mediated mechanism. We thus conducted a first-in-human study to investigate the safety, preliminary efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and VOR in patients with advanced solid tumors. Of 27 patients treated in the study, 24 were considered fully evaluable for study assessments and toxicity. Patients were treated orally with escalating doses of HCQ daily (QD) (d 2 to 21 of a 21-d cycle) in combination with 400 mg VOR QD (d one to 21). Treatment-related adverse events (AE) included grade 1 to 2 nausea, diarrhea, fatigue, weight loss, anemia, and elevated creatinine. Grade 3 fatigue and/or myelosuppression were observed in a minority of patients. Fatigue and gastrointestinal AE were dose-limiting toxicities. Six-hundred milligrams HCQ and 400 mg VOR was established as the maximum tolerated dose and recommended phase II regimen. One patient with renal cell carcinoma had a confirmed durable partial response and 2 patients with colorectal cancer had prolonged stable disease. The addition of HCQ did not significantly impact the PK profile of VOR. Treatment-related increases in the expression of CDKN1A and CTSD were more pronounced in tumor biopsies than peripheral blood mononuclear cells. Based on the safety and preliminary efficacy of this combination, additional clinical studies are currently being planned to further investigate autophagy inhibition as a new approach to increase the efficacy of HDAC inhibitors.  相似文献   

11.
Multiple sclerosis (MS) is a disease characterized by inflammatory demyelination and a strong neurodegenerative component.  相似文献   

12.
Abstract

HDAC inhibitors emerged as promising drug candidates in combating wide variety of cancers. At present, two of the compounds SAHA and Romidepsin were approved by FDA for cutaneous T-cell lymphoma and many are in various clinical phases. A new quinolone cap structure was explored with hydroxamic acid as zinc-binding group (ZBG). The pan HDAC inhibitory and antiproliferative activities against three human cancer cell lines HCT-116 (colon), NCI-H460 (lung) and U251 (glioblastoma) of the compounds (4a4w) were evaluated. Introduction of heterocyclic amines in CAP region increased the enzyme inhibitory and antiproliferative activities and few of the compounds tested are metabolically stable in both MLM and HLM.  相似文献   

13.
HDAC inhibition in lupus models   总被引:1,自引:0,他引:1  
Systemic lupus erythematosus (SLE) is a prototypic autoimmune inflammatory disease characterized by the production of autoantibodies directed against nuclear antigens such as nucleosomes, DNA and histone proteins found within the body's cells and plasma. Autoantibodies may induce disease by forming immune complexes that lodge in target organs or by crossreacting with targeted antigens and damaging tissue. In addition to autoantibody production, apoptotic defects and impaired removal of apoptotic cells contribute to an overload of autoantigens that initiate an autoimmune response. Besides the well-recognized genetic susceptibility to SLE, environmental and epigenetic factors play a crucial role in disease pathogenesis as evidenced by monozygotic twins typically being discordant for disease. Changes in DNA methylation and histone acetylation alter gene expression and are thought to contribute to the epigenetic deregulation in disease. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur. Additionally, aberrant histone acetylation is evident in individuals with SLE. Moreover, histone deacetylase inhibitors (HDACi) have been shown to reverse the skewed expression of multiple genes involved in SLE. In this review, we discuss the implications of epigenetic alterations in the development and progression of SLE, and how therapeutics designed to alter histone acetylation status may constitute a promising avenue to target disease.  相似文献   

14.
Histone deacetylases (HDACs) are negative regulators of gene expression and have been implicated in tumorigenesis and tumor progression. Therefore, HDACs are promising targets for anti-tumor drugs. However, the relevant isoforms of the 18 members encompassing HDAC family have not been identified. Studies utilizing either gene targeting or knockdown approaches reveal both specific and redundant functions of the closely related class I deacetylases HDAC1 and HDAC2 in the control of proliferation and differentiation. Combined ablation of HDAC1 and HDAC2 in different cell types led to a severe proliferation defects or enhanced apoptosis supporting the idea that both enzymes are relevant targets for tumor therapy. In a recent study on the role of HDAC1 in teratoma formation we have reported a novel and surprising function of HDAC1 in tumorigenesis. In this tumor model HDAC1 attenuates proliferation during teratoma formation. In the present work we discuss new findings on redundant and unique functions of HDAC1 and HDAC2 as regulators of proliferation and tumorigenesis and potential implications for applications of HDAC inhibitors as therapeutic drugs.  相似文献   

15.
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are two opposing classes of enzymes, which finely regulate the balance of histone acetylation affecting chromatin packaging and gene expression. Imbalanced acetylation has been associated with carcinogenesis and cancer progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. This implies that epigenetic alterations are amenable to pharmacological interventions. Accordingly, some epigenetic-based drugs (epidrugs) have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment. Here, we focus on the biological features of HDAC inhibitors (HDACis), analyzing the mechanism(s) of action and their current use in clinical practice.  相似文献   

16.
The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.  相似文献   

17.
Histone deacetylases (HDACs) are important class of enzymes that deacetylate the ε-amino group of the lysine residues in the histone tails to form a closed chromatin configuration resulting in the regulation of gene expression. Inhibition of these HDACs enzymes have been identified as one of the promising approaches for cancer treatment. The type-specific inhibition of class I HDAC enzymes is known to elicit improved therapeutic effects and thus, the search for promising type-specific HDAC inhibitors compounds remains an ongoing research interest in cancer drug discovery. Several different strategies are employed to identify the features that could identify the isoform specificity factors in these HDAC enzymes. This study combines the insilico docking and energy-optimized pharmacophore (e-pharmacophore) mapping of several known HDACi's to identify the structural variants that are significant for the interactions against each of the four class I HDAC enzymes. Our hybrid approach shows that all the inhibitors with at least one aromatic ring in their linker regions hold higher affinities against the target enzymes, while those without any aromatic rings remain as poor binders. We hypothesize the e-pharmacophore models for the HDACi's against all the four Class I HDAC enzymes which are not reported elsewhere. The results from this work will be useful in the rational design and virtual screening of more isoform specific HDACi's against the class I HDAC family of proteins.  相似文献   

18.
放射治疗是很多类型的恶性实体肿瘤的标准治疗方法之一,但是放射治疗除了存在一些严重的副作用以外很多恶性肿瘤细胞还具有抵抗放射线的功能,这就导致放射线治疗的局限性以及疗效的减弱。组蛋白超乙酰化作用可以使紧缩的核小体变得松弛,调控细胞凋亡及分化相关基因(Bim and Bmf)的表达,诱导细胞凋亡及分化,增强恶性肿瘤细胞对于放射线的敏感性。组蛋白去乙酰化酶抑制剂可以诱导组蛋白超乙酰化,用于恶性肿瘤的治疗,同时组蛋白去乙酰化酶抑制剂作为放射增敏剂有明显的抗肿瘤作用,并减少放射线治疗的剂量级照射时间,明显减轻放射线引起的副作用。组蛋白去乙酰化酶抑制剂很有可能成为肿瘤分子治疗的新靶点。检索近年来的SCI文章,国内外的学者主要是在蛋白质层面阐述组蛋白去乙酰化酶抑制剂作为放射增敏剂抗肿瘤作用机制,本文首次提出组蛋白去乙酰化酶抑制剂增强放射线促进恶性肿瘤细胞凋亡的特定基因(Bim and Bmf)并结合最新的组蛋白去乙酰化酶抑制剂分类进行综述。  相似文献   

19.
20.
Beurel E 《PloS one》2011,6(10):e25804
Inflammatory tolerance is a crucial mechanism that limits inflammatory responses in order to avoid prolonged inflammation that may damage the host. Evidence that chronic inflammation contributes to the neuropathology of prevalent neurodegenerative and psychiatric diseases suggests that inflammatory tolerance mechanisms are often inadequate to control detrimental inflammation in the central nervous system. Thus, identifying mechanisms that regulate neuroinflammatory tolerance may reveal opportunities for bolstering tolerance to reduce chronic inflammation in these diseases. Examination of tolerance after repeated lipopolysaccharide (LPS) treatment of mouse primary astrocytes demonstrated that histone deacetylase (HDAC) activity promoted tolerance, opposite to the action of glycogen synthase kinase-3 (GSK3), which counteracts tolerance. HDAC6 in particular was found to be critical for tolerance induction, as its deacetylation of acetyl-tubulin was increased during LPS tolerance, this was enhanced by inhibition of GSK3, and the HDAC6 inhibitor tubacin completely blocked tolerance and the promotion of tolerance by inhibition of GSK3. These results reveal opposing interactions between HDAC6 and GSK3 in regulating tolerance, and indicate that shifting the balance between these two opposing forces on inflammatory tolerance can obliterate or enhance tolerance to LPS in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号