首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chronic kidney disease (CKD) has become a major public health problem worldwide. Therefore, a considerable effort is currently directed to understand the molecular mechanisms of renal degenerative processes. Regardless of their initiating cause, all chronic kidney diseases (CKD) develop at some level organ fibrosis that interferes with kidney function. This is also true for the two most common inherited CKD syndromes, nephronophthitis and polycystic kidney disease, whose primary defects reside within the cilium of kidney epithelial cells. A cohort of elegant recent studies has elicited the role of the primary cilium as a versatile mechanosensory organelle that also might coordinate cross-talk between multiple signaling pathways. In addition, epigenetic mechanisms are now realized to be essential in the maintenance of adult renal architecture. In this review, we will discuss recent advances in our understanding of the signaling systems implicated in kidney homeostasis and repair.  相似文献   

2.
Chronic kidney disease (CKD) is a progressive pathological condition marked by deteriorating renal function over time. Diagnostic of kidney disease depend on serum creatinine level and glomerular filtration rate which is detectable when kidney function become half. The detection of kidney damage in an early stage needs robust biomarkers. Biomarkers allow monitoring the disease progression at initial stages of disease. On the onset of impairment in cellular organization there is perturbation in signaling molecules which are either up-regulated or down-regulated and act as an indicator or biomarker of diseased stage. This review compiled the cell signaling of different kidney biomarkers associated with the onset of chronic kidney diseases. Delay in diagnosis of CKD will cause deterioration of nephron function which leads to End stage renal disease and at that point patients require dialysis or kidney transplant. Detailed information on the complex network in signaling pathway leading to a coordinated pattern of gene expression and regulation in CKD will undoubtedly provide important clues to develop novel prognostic and therapeutic strategies for CKD.  相似文献   

3.
摘要:目的 探究阳离子化牛血清白蛋白(C-BSA)慢性肾炎大鼠肠道菌群结构变化并对其代谢功能进行预测。方法 20只SD大鼠分为正常组和模型组各10只,模型组参照Border造模方法尾静脉注射C-BSA造模,6周后测定24 h尿蛋白、血清肌酐和尿素氮水平。取大鼠结肠和肾脏观察病理切片。收集大鼠粪样运用MiSeq平台进行16S rRNA测序。结果 正常组与模型组大鼠24 h尿蛋白含量、血清肌酐和尿素氮差异均存在统计学意义(均P<0.01),模型组大鼠肾小球增大,毛细血管变窄,肠上皮损伤,发生炎性浸润。模型组大鼠普氏菌属、毛螺旋菌属相对丰度较高,且氨基酸代谢、维生素代谢和脂质代谢能力减弱。结论 C-BSA肾炎的发生不仅改变肠道菌群结构,而且影响机体代谢功能。  相似文献   

4.
Here we report a metabolomics discovery study conducted on blood serum samples of patients in different stages of chronic kidney disease (CKD). Metabolites were monitored on a quality controlled holistic platform combining reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry in both negative and positive ionization mode and gas chromatography coupled to quadrupole mass spectrometry. A substantial portion of the serum metabolome was thereby covered. Eighty-five metabolites were shown to evolve with CKD progression of which 43 metabolites were a confirmation of earlier reported uremic retention solutes and/or uremic toxins. Thirty-one unique metabolites were revealed which were increasing significantly throughout CKD progression, by a factor surpassing the level observed for creatinine, the currently used biomarker for kidney function. Additionally, 11 unique metabolites showed a decreasing trend.  相似文献   

5.
The ubiquitin-proteasome system (UPS) includes 3 enzymes that conjugate ubiquitin to intracellular proteins that are then recognized and degraded in the proteasome. The process participates in the regulation of cell metabolism. In the kidney, the UPS regulates the turnover of transporters and signaling proteins and its activity is down regulated in acidosis-induced proximal tubular cell hypertrophy. In chronic kidney disease (CKD), muscle wasting occurs because complications of CKD including acidosis, insulin resistance, inflammation, and increased angiotensin II levels stimulate the UPS to degrade muscle proteins. This response also includes caspase-3 and calpains which act to cleave muscle proteins to provide substrates for the UPS. For example, caspase-3 degrades actomyosin, leaving a 14 kDa fragment of actin in muscle. The 14 kDa actin fragment is increased in muscle of patient with kidney disease, burn injury and surgery. In addition, acidosis, insulin resistance, inflammation and angiotensin II stimulate glucocorticoid production. Glucocorticoids are also required for the muscle wasting that occurs in CKD. Thus, the UPS is involved in regulating kidney function and participates in highly organized responses that degrade muscle protein in response to loss of kidney function.  相似文献   

6.
Molecular and Cellular Biochemistry - Chronic kidney disease (CKD) is a renal dysfunction that can lead to high rates of mortality and morbidity, particularly when coupled with late diagnosis. CKD...  相似文献   

7.
Hypertriglyceridemia and intracellular lipid overload are commonly present in both the chronic kidney disease (CKD) and metabolic syndrome. Hypertriglyceridemia in the metabolic syndrome arises mostly from increased lipoprotein synthesis, while that in the CKD is mainly caused by decreased catabolism. In metabolic syndrome, enhanced plasma levels of free fatty acids and triglyceride (TG) may lead to intracellular fatty acid accumulation in the kidney. However, the mechanisms by which intracellular lipid accumulation occurs in the dieased glomeruli have not been established. I provide evidence that binding/uptake of TG-rich very low-density lipoprotein by glomerular cells is increased in CKD, leading to increased endocytic accumulation of TG. I also provide evidence that cellular damage by fatty acid accumulation in the kidney is particularly severe in podocytes, leading to apoptosis and resulting in glomerulosclerosis. Collectively, these data bring new mechanistic insights into cellular lipid overload and lipotoxicity in CKD.  相似文献   

8.

Chronic kidney disease (CKD) remains a major health threat worldwide which is associated with elevated blood level of dimethylamine (DMA) and unbalanced platelet functions. Dimethylamine, a simple aliphatic amine, is abundantly found in human urine as well as other body fluids like plasma. However, the relation between dimethylamine and platelet activation is unclear. This study aims to unravel the mechanism of DMA and platelet function in chronic kidney disease. Through in vitro platelet characterization assay and in vivo CKD mouse model, the level of DMA, platelet activity and renal function were assessed by established methods. PKCδ and its downstream kinase MEK1/2 were examined by immunoblotting analysis of human platelet extract. Rescue experiments with PKCδ inhibitor or choline deficient diet were also conducted. DMA level in plasma of mouse CKD model was elevated along with enhanced platelet activation and comprised renal function. DMA can activate platelet in vitro and in vivo. Inhibition of PKCδ could antagonize the effect of DMA on platelet activation. When choline as the dietary source of DMA was deprived from CKD mouse, the level DMA was reduced and platelet activation was attenuated. Our results demonstrate that dimethylamine could enhance platelet activation in CKD model, potentially through activation of PKCδ.

  相似文献   

9.
目的:研究慢性肾病(CKD)患者血清可溶性细胞粘附分子-1(soluble intercellular adhesionmolecule-1,sICAM)的变化与临床意义。方法:用双抗体夹心ELISA方法,对52例CKD患者及20例健康对照人群的sICAM-1水平进行检测分析。52例CKD患者中,其中27例为CRF血液透析患者;25例肾功能正常CKD患者。结果:CKD组患者sICAM-1水平明显高于对照组(105.42±61.95)(P<0.01);肾功能正常CKD组和CKD-CRF组sICAM-1水平均显著高于对照组(P<0.01);CRF组sICAM-1水平明显低于肾功能正常CKD组(P<0.01);但高于对照组(84.80±19.61/164.08±70.66/54.61±5.48)(P<0.01)。结论:sICAM-1水平在慢性肾脏病中明显升高,CRF组病人sICAM-1水平低于CKD肾功能正常患者,提示透析过程中可能有sICAM溢出,吸附并丢失入透析液中(1),或可能是肾纤维化为主的病变使sICAM-1表达下降。  相似文献   

10.
Chronic kidney disease (CKD) is a major epidemiologic problem and a risk factor for cardiovascular events and cerebrovascular accidents. Because CKD shows irreversible progression, early diagnosis is desirable. Renal function can be evaluated by measuring creatinine-based estimated glomerular filtration rate (eGFR). This method, however, has low sensitivity during early phases of CKD. Cystatin C (CysC) may be a more sensitive predictor. Using a metabolomic method, we previously identified metabolites in CKD and hemodialysis patients. To develop a new index of renal hypofunction, plasma samples were collected from volunteers with and without CKD and metabolite concentrations were assayed by quantitative liquid chromatography/mass spectrometry. These results were used to construct a multivariate regression equation for an inverse of CysC-based eGFR, with eGFR and CKD stage calculated from concentrations of blood metabolites. This equation was able to predict CKD stages with 81.3% accuracy (range, 73.9–87.0% during 20 repeats). This procedure may become a novel method of identifying patients with early-stage CKD.  相似文献   

11.
Chronic kidney disease (CKD) is emerging as one of the major causes of the increase in mortality rate and is expected to become 5th major cause by 2050. Many studies have shown that it is majorly related to various risk factors, and thus becoming one of the major health issues around the globe. Early detection of renal disease lowers the overall burden of disease by preventing individuals from developing kidney impairment. Therefore, diagnosis and prevention of CKD are becoming the major challenges, and in this situation, biosensors have emerged as one of the best possible solutions. Biosensors are becoming one of the preferred choices for various diseases diagnosis as they provide simpler, cost-effective and precise methods for onsite detection. In this review, we have tried to discuss the globally developed biosensors for the detection of CKD, focusing on their design, pattern, and applicability in real samples. Two major classifications of biosensors based on transduction systems, that is, optical and electrochemical, for kidney disease have been discussed in detail. Also, the major focus is given to clinical biomarkers such as albumin, creatinine, and others related to kidney dysfunction. Furthermore, the globally developed sensors for the detection of CKD are discussed in tabulated form comparing their analytical performance, response time, specificity as well as performance in biological fluids.  相似文献   

12.
Patients with diabetes mellitus (DM) represent a risk group for developing chronic kidney disease (CKD), the terminal stages of which require renal replacement therapy. The study of genetic predisposition to CKD is of special significance from the perspective of the prediction and identification of risk groups at the preclinical stage. The present study is a review of the world literature on the genetics of CKD in diabetes and also includes data of our own studies.  相似文献   

13.
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent an important challenge for healthcare providers. The identification of new biomarkers/pharmacological targets for kidney disease is required for the development of more effective therapies. Several studies have shown the importance of the endoplasmic reticulum (ER) stress in the pathophysiology of AKI and CKD. ER is a cellular organelle devolved to protein biosynthesis and maturation, and cellular detoxification processes which are activated in response to an insult. This review aimed to dissect the cellular response to ER stress which manifests with activation of the unfolded protein response (UPR) with its major branches, namely PERK, IRE1α, ATF6 and the interplay between ER and mitochondria in the pathophysiology of kidney disease. Further, we will discuss the relationship between mediators of renal injury (with specific focus on vascular growth factors) and ER stress and UPR in the pathophysiology of both AKI and CKD with the aim to propose potential new targets for treatment for kidney disease.  相似文献   

14.
Hu CA  Klopfer EI  Ray PE 《FEBS letters》2012,586(7):947-955
Human apolipoprotein L1 (ApoL1) possesses both extra- and intra-cellular functions crucial in host defense and cellular homeostatic mechanisms. Alterations in ApoL1 function due to genetic, environmental, and lifestyle factors have been associated with African sleeping sickness, atherosclerosis, lipid disorders, obesity, schizophrenia, cancer, and chronic kidney disease (CKD). Importantly, two alleles of APOL1 carrying three coding-sequence variants have been linked to CKD, particularly in Sub-Saharan Africans and African Americans. Intracellularly, elevated ApoL1 can induce autophagy and autophagy-associated cell death, which may be critical in the maintenance of cellular homeostasis in the kidney. Similarly, ApoL1 may protect kidney cells against renal cell carcinoma (RCC). We summarize the role of ApoL1 in RCC and CKD, highlighting the critical function of ApoL1 in autophagy.  相似文献   

15.

Introduction

In experimental models of West Nile virus (WNV) infection, animals develop chronic kidney infection with histopathological changes in the kidney up to 8-months post-infection. However, the long term pathologic effects of acute infection in humans are largely unknown. The purpose of this study was to assess renal outcomes following WNV infection, specifically the development of chronic kidney disease (CKD).

Methods

In a cohort of 139 study participants with a previous diagnosis of WNV infection, we investigated the prevalence of CKD using the Kidney Disease Outcomes Quality Initiative (KDOQI) criteria based on the Modification of Diet in Renal Disease (MDRD) formula and urinary abnormalities, and assessed various risk factors and biomarkers.

Results

Study participants were primarily male (60%) and non-Hispanic white (86%) with a mean age of 57 years. Most (83%) were four to nine years post-infection at the time of this study. Based on the KDOQI definition, 40% of participants had evidence of CKD, with 10% having Stage III or greater and 30% having Stage I–II. By urinary dipstick testing, 26% of patients had proteinuria and 23% had hematuria. Plasma NGAL levels were elevated in 14% of participants while MCP-1 levels were increased in 12%. Over 1.5 years, the average change in eGFR was −3.71 mL/min/1.73 m2. Only a history of Neuroinvasive WNV disease was independently associated with CKD following multivariate analysis.

Discussion

We found a high prevalence of CKD after long term follow-up in a cohort of participants previously infected with WNV. The majority of those with CKD are in Stage I-II indicating early stages of renal disease. Traditional risk factors were not associated with the presence of CKD in this population. Therefore, clinicians should regularly evaluate all patients with a history of WNV for evidence of CKD.  相似文献   

16.
Chronic Kidney Disease (CKD) is a major health problem characterized by kidney dysfunction with progressive segmental glomerulosclerosis to end-stage renal disease (ESRD). Due to lack of scientific data and comprehensive reports, the current systematic review provides an inclusive understanding and prospective associated with phytopharmacology of NEERI-KFT in CKD. The data was collected from more than five databases such as Science Direct, Google Scholar, Elsevier, PubMed, Springer, ACS publication etc using keywords like CKD/Kidney disease, epidemiology/prevalence, modern therapies for CKD management, NEERI-KFT and its role in kidney disease. The study was performed based on scientific reports screened by experts according to inclusion and exclusion criteria. The pre-clinical and clinical findings suggested that NEERI-KFT has promising effects as nephroprotective and considered safe and well effective in primary care of kidney against disease. Phytopharmacological evaluation of NEERI-KFT suggest that it exhibit substantial potential against oxidative and inflammatory stress induced apoptosis by exerting antioxidants, nephroprotective and immunomodulatory effects. Hence, it can be enlighten that NEERI-KFT have potential herbs which exerts significant antioxidants, nephroprotective and immunomodulatory effects in the patients associated with renal dysfunction or CKD thus improving altered renal architecture and renal physiology. Clinically, it is concluded that NEERI-KFT works kidney malfunction and cease ESRD progression or even reduce the number of dialysis.  相似文献   

17.
Acute kidney injury(AKI) and chronic kidney disease(CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models(mainly genetically modified mouse models).Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.  相似文献   

18.
19.
Chronic kidney disease (CKD) is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC) have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM) reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX) combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 μg CM or 50 μg non-CM (NCM) twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance) and effective renal plasma flow (PAH clearance) were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.  相似文献   

20.
Interleukin (IL)-10 is an anti-inflammatory factor that suppresses renal fibrosis and improves renal function in CKD rats. IL-20 belongs to the IL-10 family; therefore, we sought to determine whether IL-20 is involved in CKD. CKD patients at stage five expressed significantly higher IL-20 in serum than controls. Immunohistochemical staining demonstrated that more IL-20 protein was expressed in the kidney tubular-epithelial cells, mesangial cells, and immune cells of CKD rats with a 5/6 nephrectomy. The lung, liver, and heart tissue of CKD rats also overexpressed IL-20. Thus, we treated two tubular epithelial cells, TKPTS and M-1 cells, with IL-20 to study its effects on CKD. IL-20 treatment induced apoptosis in these cells via caspase-3 activation. Incubating IL-20 with rat interstitial fibroblasts, NRK-49F cells, upregulated TGF-β1production, one key inducer for renal fibrogenesis. Therefore, IL-20 injured renal epithelial cells and induced fibroblasts to produce TGF-β1 that hastened the progression of CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号