首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Population dynamics of small mammals and predators in semi-arid Chile is positively correlated with rainfall associated with incursions of El Niño (El Niño Southern Oscillation: ENSO). However, the causal relationships between small mammal fluctuations, predator oscillations, and climatic disturbances are poorly understood. Here, we report time series models for three species of small mammal prey and two species of owl predators. The large differences in population fluctuations between the three small mammal species are related to differences in their respective feedback structures. The analyses reveal that per capita growth rate of the leaf-eared mouse is a decreasing function of log density and of log barn owl abundance together with a positive rainfall effect. In turn, per capita population growth rate ( R -function) of the barn owl is a negative function of log barn owl abundance and a positive function of leaf-eared mouse abundance, suggesting a predator–prey interaction. The dramatic population fluctuations exhibited by leaf-eared mouse ( Phyllotis darwini ) are caused by climate effects coupled with a complex food web architecture.  相似文献   

2.
Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent‐scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole‐eating predators remains unknown. To quantify this impact, we used a 27‐year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high‐ to a low‐amplitude fluctuation regime in the mid‐1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First‐year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole‐eating predators are likely to be threatened by dampening vole cycles throughout Europe.  相似文献   

3.
The ongoing climate change has improved our understanding of how climate affects the reproduction of animals. However, the interaction between food availability and climate on breeding has rarely been examined. While it has been shown that breeding of boreal birds of prey is first and foremost determined by prey abundance, little information exists on how climatic conditions influence this relationship. We studied the joint effects of main prey abundance and ambient weather on timing of breeding and reproductive success of two smaller (pygmy owl Glaucidium passerinum and Tengmalm’s owl Aegolius funereus) and two larger (tawny owl Strix aluco and Ural owl Strix uralensis) avian predator species using long-term nation-wide datasets during 1973–2004. We found no temporal trend either in vole abundance or in hatching date and brood size of any studied owl species. In the larger species, increasing late winter or early spring temperature advanced breeding at least as much as did high autumn abundance of prey (voles). Furthermore, increasing snow depth delayed breeding of the largest species (Ural owl), presumably by reducing the availability of voles. Brood size was strongly determined by spring vole abundance in all four owl species. These results show that climate directly affects the breeding performance of vole-eating boreal avian predators much more than previously thought. According to earlier studies, small-sized species should advance their breeding more than larger species in response to increasing temperature. However, we found an opposite pattern, with larger species being more sensitive to temperature. We argue that this pattern is caused by a difference in the breeding tactics of larger mostly capital breeding and smaller mostly income breeding owl species.  相似文献   

4.
Joshua T. Ackerman 《Oikos》2002,99(3):469-480
Coexisting prey species interact indirectly via their shared predators when one prey type influences predation rates of the second prey type. In a temperate system where the predominant shared predator is a generalist, I studied the indirect effects of rodent populations on waterfowl nest success, both within the nesting season among sites and among years. Among six to ten upland fields (14 to 27 ha), mallard ( Anas platyrhynchos ) nest success was positively correlated with rodent abundance in all three years of the study. After removing year effects, mallard nest success remained positively correlated with the relative abundance of rodents. Of the rodent species present, California voles ( Microtus californicus ) were the most important coexisting prey type influencing nest success. Among years, mallard nest success was positively correlated with vole abundance; the asymptotic relationship suggests a threshold response to vole abundance, beyond which predators become satiated and additional voles do little to affect nest success. I tested and rejected three alternative explanations for the observed positive correlation between mallard nest success and rodent abundance that do not involve an indirect effect of coexisting prey populations. The influences of dense nesting cover, nesting density, and predator activity did not explain the observed patterns of nest success. These results suggest that rodent populations buffer predation on waterfowl nests, both within and among years, via the behavioral responses of shared predators to coexisting prey.  相似文献   

5.
Large predators may affect the hunting efficiency of smaller ones directly by decreasing their numbers, or indirectly by altering their behaviour. Either way this may have positive effects on the density of shared prey. Using large outdoor enclosures, we experimentally studied whether the presence of the Tengmalm's owl Aegolius funereus affects the hunting efficiency of the smallest member of the vole-eating predator guild, the least weasel Mustela nivalis, as measured by population responses of coexisting prey species, the field vole Microtus agrestis and the sibling vole M. levis . We compared the density and survival probability of vole populations exposed to no predation, weasel predation or combined predation by a weasel and an owl. The combined predation of both owl and weasel did not result in obvious changes in the density of sibling and field vole populations compared to the control populations without predators, while predation by least weasel alone decreased the densities of sibling voles and induced a similar trend in field vole densities. Survival of field voles was not affected by predator treatment while sibling vole survival was lower in predator treated populations than in control populations. Our results suggest that weasels are intimidated by avian predators, but without changing the effects of predators on competitive situations between the two vole species. Non-lethal effects of intraguild predation therefore will not necessarily change competitive interactions between shared prey species.  相似文献   

6.
Identifying the determinants of population growth rate is a central topic in population ecology. Three approaches (demographic, mechanistic and density-dependent) used historically to describe the determinants of population growth rate are here compared and combined for an avian predator, the barn owl (Tyto alba). The owl population remained approximately stable (r approximately 0) throughout the period from 1979 to 1991. There was no evidence of density dependence as assessed by goodness of fit to logistic population growth. The finite (lambda) and instantaneous (r) population growth rates were significantly positively related to food (field vole) availability. The demographic rates, annual adult mortality, juvenile mortality and annual fecundity were reported to be correlated with vole abundance. The best fit (R(2) = 0.82) numerical response of the owl population described a positive effect of food (field voles) and a negative additive effect of owl abundance on r. The numerical response of the barn owl population to food availability was estimated from both census and demographic data, with very similar results. Our analysis shows how the demographic and mechanistic determinants of population growth rate are linked; food availability determines demographic rates, and demographic rates determine population growth rate. The effects of food availability on population growth rate are modified by predator abundance.  相似文献   

7.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

8.
Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes ), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus ). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40'N, 15°25'E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns.  相似文献   

9.
Some studies suggest that mild winters decrease overwinter survival of small mammals or coincide with decreased cyclicity in vole numbers, whereas other studies suggest non-significant or positive relationships between mild winter conditions and vole population dynamics. We expect for the number of voles to be higher in the rich and low-lying habitats of the coastal areas than in the less fertile areas inland. We assume that this geographical difference in vole abundances is diminished by mild winters especially in low-lying habitats. We examine these relationships by generalized linear mixed models using prey remains of breeding tawny owls Strix aluco as a proxy for the abundance of voles. The higher number of small voles in the coastal area than in the inland area suggest that vole populations were denser in the coastal area. Vole populations of both areas were affected by winter weather conditions particularly in March, but these relationships differed between areas. The mild ends of winter with frequent fluctuations of the ambient temperature around the freezing point (“frost seesaw”) constrained significantly the coastal vole populations, while deep snow cover, in general after hard winters, was followed by significantly lowered number of voles only in the inland populations. Our results suggest that coastal vole populations are more vulnerable to mild winters than inland ones. We also show that tawny owl prey remains can be used in a meaningful way to study vole population dynamics.  相似文献   

10.
The regional synchrony of short-term population fluctuations of small rodents and small game has usually been explained by varying impacts of generalist predators subsisting on both voles and small game (the "alternative prey hypothesis" APH). APH says that densities of predators increase as a response to increasing vole densities and then these predators shift their diet from the main prey to the alternative prey when the main prey decline and vice versa. We studied the diet composition of breeding common buzzards Buteo buteo during 1985-92 in western Finland. Microtus voles were the main prey and water voles, shrews, forest grouse, hares and small birds the most important alternative prey. Our data from the between-year variation in the diet composition of buzzards fulfilled the main predictions of APH. The yearly proportion of main prey (Microtus voles) in the diet was higher in years of high than low vole abundance. The proportion of grouse in the diet of buzzards was negatively related to the abundance of Microtus voles in the field and was nearly independent of grouse abundance in the field. In addition, buzzards mainly took grouse chicks and young hares which is consistent with the prediction of APH. Therefore, we conclude that buzzards are able to shift their diet in the way predicted by the APH and that buzzards, together with other generalist predators, may reduce the breeding success of small game in the decline phase of the vole cycle, and thus substantially contribute to the existence of short-term population cycles of small game.  相似文献   

11.
The high Arctic has the world's simplest terrestrial vertebrate predator–prey community, with the collared lemming being the single main prey of four predators, the snowy owl, the Arctic fox, the long-tailed skua, and the stoat. Using a 20-year-long time series of population densities for the five species and a dynamic model that has been previously parameterized for northeast Greenland, we analyzed the population and community level consequences of the ongoing and predicted climate change. Species' responses to climate change are complex, because in addition to the direct effects of climate change, which vary depending on species' life histories, species are also affected indirectly due to, e.g., predator–prey interactions. The lemming–predator community exemplifies these complications, yet a robust conclusion emerges from our modeling: in practically all likely scenarios of how climate change may influence the demography of the species, climate change increases the length of the lemming population cycle and decreases the maximum population densities. The latter change in particular is detrimental to the populations of the predators, which are adapted to make use of the years of the greatest prey abundance. Therefore, climate change will indirectly reduce the predators' reproductive success and population densities, and may ultimately lead to local extinction of some of the predator species. Based on these results, we conclude that the recent anomalous observations about lack of cyclic lemming dynamics in eastern Greenland may well be the first signs of a severe impact of climate change on the lemming–predator communities in Greenland and elsewhere in the high Arctic.  相似文献   

12.
Predators will often respond to reductions in preferred prey by switching to alternative prey resources. However, this may not apply to all alternative prey groups in patchy landscapes. We investigated the demographic and aggregative numerical and functional responses of Common Buzzards Buteo buteo in relation to variations in prey abundance on a moor managed for Red Grouse Lagopus lagopus scotica in south‐west Scotland over three consecutive breeding and non‐breeding seasons. We predicted that predation of Red Grouse by Buzzards would increase when abundance of their preferred Field Vole Microtus agrestis prey declined. As vole abundance fluctuated, Buzzards responded functionally by eating voles in relation to their abundance, but they did not respond demographically in terms of either breeding success or density. During a vole crash year, Buzzards selected a wider range of prey typical of enclosed farmland habitats found on the moorland edge but fewer Grouse from the heather moorland. During a vole peak year, prey remains suggested a linear relationship between Grouse density and the number of Grouse eaten (a Type 1 functional response), which was not evident in either intermediate or vole crash years. Buzzard foraging intensity varied between years as vole abundance fluctuated, and foraging intensity declined with increasing heather cover. Our findings did not support the prediction that predation of Red Grouse would increase when vole abundance was low. Instead, they suggest that Buzzards predated Grouse incidentally while hunting for voles, which may increase when vole abundances are high through promoting foraging in heather moorland habitats where Grouse are more numerous. Our results suggest that declines in their main prey may not result in increased predation of all alternative prey groups when predators inhabit patchy landscapes. We suggest that when investigating predator diet and impacts on prey, knowledge of all resources and habitats that are available to predators is important.  相似文献   

13.
VIDAR SELÅS 《Ibis》2006,148(4):678-686
According to the alternative prey hypothesis, autumn populations of ground-nesting game birds fluctuate in synchrony with vole numbers because generalist predators that mainly eat voles switch to alternative prey, such as eggs and chicks, when vole numbers decline. In hunting statistics from Nord-Trøndelag, central Norway, 1901–24, annual fluctuations in the number of Willow Grouse Lagopus lagopus and Western Capercaillie Tetrao urogallus , but not of Woodcock Scolopax rusticola , were positively related to vole numbers in the current year. Both Woodcock and grouse indices were related to hunting indices of Goshawk Accipiter gentilis and to weather variables assumed to influence the birds' survival or reproduction, suggesting that the indices actually reflected local population levels. Synchronous vole and grouse fluctuations are consistent with the alternative prey hypothesis (although predator densities were low in the early 1900s), but the asynchronous Woodcock fluctuations refute the hypothesis. Rather, because the Woodcock does not feed on plants utilized by voles and grouse, I suggest that food quality is the ultimate factor for the synchrony in vole and grouse numbers in Norway.  相似文献   

14.
The consequences of cyclic fluctuations in abundance of prey species on predator continue to improve our understanding of the mechanisms behind population regulation. Among predators, vole‐eating raptors usually respond to changes in prey abundance with no apparent time‐lag and therefore contradict predictions from the predator–prey theory. In such systems, the interplay between demographic traits and population growth rate in relation to prey abundance remains poorly studied, yet it is crucial to characterize the link between ecological processes and population changes. Using a mechanistic approach, we assessed the demographic rates associated to the direct and indirect numerical responses of a specialist raptor (Montagu's harrier) to its cyclic prey (common vole), using long term data from two adjacent study sites in France. First‐year survival rates were weakly affected by vole abundance, probably due to the fact that Montagu's harriers are trans‐Saharan migrants and thus escape the vole collapse occurring in autumn–winter. Recruitment of yearling as well as breeding propensity of experienced adult females were strongly affected by vole abundance and at least partially shaped the trajectory of the breeding population. We argued that the strong density dependent signal detected in predator time series was mostly the phenomenological consequence of the positive direct numerical response of harriers to vole abundance. Accounting for this, we proposed a method to assess density dependence in predator relying on a cyclic prey. Finally, the variation in Montagu's harrier population growth rates was best explained by overwinter growth rates of the prey population and to a lesser extent by previous residual predator density.  相似文献   

15.
  • 1 Reasons for fluctuating populations of small mammals have been intensively investigated since the early days of modern ecology. Particular interest has been taken in vole populations exhibiting multiannual oscillations. Much empirical and theoretical work has been accomplished to find out the key factor(s) driving these population cycles and many reviews have been written about the results.
  • 2 One of the most plausible processes for explaining regular fluctuations in small mammals is predation. Here I review the existing literature on the experimental studies of the role of predation in vole population dynamics in the hope that a critical examination of these studies will help researchers improve the design of future experiments.
  • 3 Most predation manipulations have been done in exclosures, but there are also studies that have attempted to reduce or increase predator numbers in non‐fenced areas, islands and enclosures.
  • 4 As the number of experimental studies has increased, their quality in terms of replication, use of controls and realistic spatial and temporal scales has also improved.
  • 5 Most studies have found population‐level effects of predator manipulations on prey populations. The effects have varied from very weak to very strong, reflecting dissimilar experimental designs and the great variety of predator–prey interactions among different kinds of species in different landscapes. Most of these studies show that predation limits population growth of voles, and in some circumstances even regulate vole population fluctuations, but none of them clearly demonstrates that predation consistently changes fluctuation patterns of voles.
  • 6 To be able to assess more reliably the true role of predation on (cyclic) population fluctuations of voles, more competent experiments are still needed not only over the geographical range of cyclic population dynamics, but also in areas of weakly or non‐cyclic populations of voles.
  相似文献   

16.

Background

Most hypotheses on population limitation of small mammals and their predators come from studies carried out in northern latitudes, mainly in boreal ecosystems. In such regions, many predators specialize on voles and predator-prey systems are simpler compared to southern ecosystems where predator communities are made up mostly of generalists and predator-prey systems are more complex. Determining food limitation in generalist predators is difficult due to their capacity to switch to alternative prey when the basic prey becomes scarce.

Methodology

We monitored the population density of a generalist raptor, the Eurasian kestrel Falco tinnunculus over 15 years in a mountainous Mediterranean area. In addition, we have recorded over 11 years the inter-annual variation in the abundance of two main prey species of kestrels, the common vole Microtus arvalis and the eyed lizard Lacerta lepida and a third species scarcely represented in kestrel diet, the great white-toothed shrew Crocidura russula. We estimated the per capita growth rate (PCGR) to analyse population dynamics of kestrel and predator species.

Principal Findings

Multimodel inference determined that the PCGR of kestrels was better explained by a model containing the population density of only one prey species (the common vole) than a model using a combination of the densities of the three prey species. The PCGR of voles was explained by kestrel abundance in combination with annual rainfall and mean annual temperature. In the case of shrews, growth rate was also affected by kestrel abundance and temperature. Finally, we did not find any correlation between kestrel and lizard abundances.

Significance

Our study showed for the first time vertebrate predator-prey relationships at southern latitudes and determined that only one prey species has the capacity to modulate population dynamics of generalist predators and reveals the importance of climatic factors in the dynamics of micromammal species and lizards in the Mediterranean region.  相似文献   

17.
1. Understanding which factors regulate population dynamics may help us to understand how a population would respond to environmental change, and why some populations are declining.
2. In southern Finland, vole abundance shows a three-phased cycle of low, increase and decrease phases, but these have been fading out in recent years. During five such cycles (1981–1995), all tawny owls Strix aluco were censused in a 250-km2 study area, and their reproduction and survival were monitored.
3. Males and females showed similar dynamics, but experienced breeders recruited more offspring and had higher survival than first breeders. Offspring recruitment, but not survival of breeding individuals varied in accordance with vole abundance.
4. The population's numerical response to prey abundance was primarily due to first-breeding individuals entering the population in the increase phase when immigration was the highest. First-breeding birds were younger, but experienced breeders were older in more favourable vole years.
5. A stage-specific matrix population model integrating survival and fecundity showed that, despite obvious variation in fecundity between vole cycle phases, this variation had limited importance for overall tawny owl population dynamics, but that the survival of experienced breeders during the low phase is most important for population growth.
6. Model and data agreed that the vole cycle drives the dynamics of this avian predator by limiting the recruitment of new breeders during the low phase. Population dynamics hence differ not only from the classic example of the species in a more temperate region in the UK where the number of territories is stable across years, but also from the dynamics of other avian vole predators in Fennoscandia where the recurring crash in vole abundance drastically lowers adult survival thereby creating vacancies.  相似文献   

18.
Specialist individuals within animal populations have shown to be more efficient foragers and/or to have higher reproductive success than generalist individuals, but interspecific reproductive consequences of the degree of diet specialisation in vertebrate predators have remained unstudied. Eurasian pygmy owls (hereafter POs) have less vole-specialised diets than Tengmalm's owls (TOs), both of which mainly subsist on temporally fluctuating food resources (voles). To test whether the specialist TO is more limited by the main prey abundance than the generalist PO, we studied breeding densities and reproductive traits of co-existing POs and TOs in central-western Finland during 2002–2019. Breeding densities of POs increased with augmenting densities of voles in the previous autumn, whereas breeding densities of TOs increased with higher vole densities in both the previous autumn and the current spring. In years of vole scarcity, PO females started egg-laying earlier than TOs, whereas in years of vole abundance TO females laid eggs substantially earlier than PO females. The yearly mean clutch size and number of fledglings produced of both POs and TOs increased with abundance of voles in the current spring. POs laid large clutches and produced large broods in years of both high and low vole abundance, whereas TOs were able to do so only in years of high vole abundance. POs were able to raise on average 73% of the eggs to fledglings whereas TOs only 44%. The generalist foraging strategy of POs including flexible switching from main prey to alternative prey (small birds) appeared to be more productive than the strictly vole-specialized foraging strategy of TOs. In contrast to earlier studies at the individual-level, specialist predators at the species level (in this case TOs) appear to be less effective than generalists (POs), but diet specialisation was particularly costly under conditions when scarcity of main foods limited offspring production.  相似文献   

19.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

20.
Environmental variation across space and time can strongly influence life‐history strategies in vertebrates. It has been shown that the reproductive success of birds of prey is closely related to food availability. However, relatively little is known about intraspecific differences in reproductive success of birds in relation to varying ecological conditions across environmental gradients. We investigated the reproductive performance of Tengmalm's Owls Aegolius funereus in a temperate (Czech Republic, 50°N) and a boreal (Finland, 63°N) population in relation to long‐term variations in the abundance of their main prey (small rodents). Prey densities at the northern site were much higher, but there were also large inter‐annual fluctuations and years with steep summer declines of vole densities. Northern owls laid larger clutches but offspring production per nest was similar at both study sites. This resulted from higher nestling mortality in the northern population, especially in nests established later in the season. Despite much greater nesting losses due to predation by Pine Martens Martes martes, productivity at the population level was about four times greater at the temperate site, mainly due to the much higher breeding densities compared with Finland. Tengmalm's Owls at the temperate study site may benefit from relatively stable prey abundance, a more diverse prey community that offers alternative prey during vole scarcity, longer nights in summer that allow more time for foraging, and a lower level of interspecific competition with other vole‐specialized predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号