首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The time course for the synthesis of glutamic acid and by-products from glucose was investigated using immobilized cell reactor of the bacterium C.glutamicum. Lactic acid, succinic acid, alanine acid and aspartic acid were formed early in the fermentation and during the active growth phase, whereas gluconic acid, -ketoglutaric acid and proline were produced late and during the active phase of glutamic acid synthesis. Oxygen transfer rate in fermentation broth had a pronounced effect on the nature and quantities of fermentation products. In continuous fermentation and at OTR of 102.5 mMO2/l.h., formation of by-products greatly decreased and up to 58.5 g/l of glutamic acid were produced with a conversion efficiency of 74.6% of the theoretical value and volumetric productivity of 6.2 g/l.h.  相似文献   

2.
Summary The effects of phosphate on -amylase fermentation byBacillus amyloliquefaciens were investigated. It was observed through batch culture that optimal phosphate level which maximizes -amylase biosynthesis exists. High concentration of phosphate level promotes maltose uptake and growth of the microorganism, while high maltose uptake rate in the microorganism at the same time represses the enzyme biosynthesis presumably due to catabolite repression inside the microorganism. In continuous cultivation, a steady state of -amylase biosynthesis was obtained by maintaining phosphate level at a certain level. In fed-batch culture, by intermittant feeding of phosphate as well as maltose, higher activity of -amylase in the broth was obtained compared to the result from single nutrient feeding.  相似文献   

3.
Summary Recombinant Saccharomyces cerevisiae was employed to continuously produce hirudin in a membrane cell recycle fermentor. The gene cooing for the anticoagulant protein was combined with the GAL10 promoter for controlled expression and the MF 1 signal sequence for secretion to the fermentation broth. A dilution rate of 0.1h–1 yielded a maximum hirudin concentration of 59mg / l with a specific hirudin concentration of 2.4 mg /g cell mass among dilution rates studied ranging from 0.05h–1 to 0.3h–1. Cell bleeding gave the same fermentation results as cell recycle fermentation without cell bleeding. The productivity of the cell recycle fermentation process was 6.0mg hirudin/l · hr, corresponding to a 1.7-fold increase compared with a conventional continuous culture.  相似文献   

4.
Summary A process for l-phenylalanine production was studied using a tyrosine auxotrophic regulatory mutant of Escherichia coli, resistant to both -2-thienyl-dl-alanine and p-fluoro-dl-phenylalanine. Fermentations were carried out in a 30-1 fermentor with intermittent feeding of glucose plus phosphate. The mutant accumulated l-phenylalanine in the fermentation broth up to 15 g/l at pH 7.0 and 33°C. Column chromatography on a strong cation exchanger was employed as the most effective step in the purification of l-phenyl-alanine from the broth. This step brought about 4-fold concentration of the product with 96% recovery.  相似文献   

5.
Summary The batch fermentation of whey permeate to lactic acid was improved by supplementing the broth with enzyme-hydrolyzed whey protein. A mathematical model based on laboratory results predicts to a 99% confidence limit the kinetics of this fermentation. Cell growth, acid production and protein and sugar use rates are defined in quantifiable terms related to the state of cell metabolism. The model shows that the constants of the Leudeking-Piret model are not true constants, but must vary with the medium composition, and especially the peptide average molecular weight. The kinetic mechanism on which the model is based also is presented.Nomenclature K i lactic acid inhibition constant (g/l) - K pr protein saturation constant during cell growth (g/l) - K pr protein saturation constant during maintenance (g/l) - K s lactose saturation constant (g/l) - [LA] lactic acid concentration (g/l) - [PR] protein concentration (g/l) - [S] lactose concentration (g/l) - t time (h) - [X] cell mass concentration (g/l) - , fermentation constants of Leudeking and Piret - specific growth rate (l/h) - Y g, LA/S acid yield during cell growth (g acid/g sugar) - Y m, LA/S acid yield during maintenance (g acid/g sugar) - Y x/pr yield (g cells/g protein) - specific sugar use rate during cell growth (g sugar/h·g cell) - specific sugar use rate during maintenance (g sugar/h·cell)  相似文献   

6.
Summary A natural product, Sch 42029, isolated from the fermentation of anActinoplanes sp. (SCC 1971) was found to displace Sch 23390 from the dopamine-1 (D1) receptor. The compound was isolated from the fermentation broth by adsorption of the filtrate on XAD-16 resin, elution with water-methanol, followed by purification by gel-permeation chromatography and HPLC. Using spectroscopic analysis, the structure was determined to be 2,5-dihydroxy acetanilide. The pure compound displaced Sch 23390, a D1-selective ligand, at aK i of 1.6 m and spiperone, a D2-selective ligand, at aK i of 200 m.  相似文献   

7.
The present study describes the use of vermiculite for enhanced citric acid productivity by a mutant strain of Aspergillus niger NGGCB-101 in a stirred bioreactor of 15.0 l capacity. The maximum amount of citric acid (96.10 g/l) was obtained with the control 144 h after mycelial inoculation. To enhance citric acid production, varying levels of vermiculite were added as an additive into the fermentation medium. The best results were observed when 0.20 g/l vermiculite was added into the medium 24 h after inoculation resulting in the production of 146.88 g citric acid monohydrate/l. The dry cell mass and residual sugar were 11.75 and 55.90 g/l, respectively. Mixed mycelial pellets (1.08–1.28 mm, dia) were observed in the fermented culture broth. When the culture grown at different vermiculite levels was monitored for Q p , Q s and q p , there was a significant enhancement (P 0.05) in these variables over the control (vermiculite-free). Based on these results, it is concluded that vermiculite might affect mycelial morphology and subsequent TCA cycle performance to improve carbon source utilization by the mould, basic parameters for high performance citric acid fermentation.  相似文献   

8.
Summary A large number of submerged citric acid fermentations in a beet molasses substrate was studied. The development of Aspergillus niger from conidia to pellets was followed. Rheological characteristics of the fermentation broth including the pellets were determined. The results obtained confirm the fact that the non-Newtonian pseudoplastic behaviour of the fermentation broth was due to the presence of mycelial pellets. The most significant changes in rheological properties occurred during the period of maximal citric acid production and increase in biomass. Offprint requests to: M. Berovi  相似文献   

9.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

10.
Large amounts of crude glycerol produced in the biodiesel industry can be used as a low-cost renewable feedstock to produce chemicals and fuels. Compared to sugars (sucrose, glucose, xylose, etc.), glycerol has a lower reducing level, which is of benefit to the production of reduced chemicals. In this work, glycerol as the sole carbon source in propionic acid fermentation by metabolically engineered Propionibacterium acidipropionici (ACK-Tet) was studied. It was found that the adapted ACK-Tet mutant could use glycerol for its growth and produced propionic acid at a high yield of 0.54–0.71 g/g, which was much higher than that from glucose (0.35 g/g). In addition, the production of acetic acid in glycerol fermentation was much less than that from glucose. Thus, glycerol fermentation produced a high purity propionic acid with a high propionic acid to acetic acid ratio of 22.4 (vs. 5 for glucose fermentation), facilitating the recovery and purification of propionic acid from the fermentation broth. The highest propionic acid concentration obtained from glycerol fermentation was 106 g/L, which was 2.5 times of the highest concentration (42 g/L) previously reported in the literature.  相似文献   

11.

Objectives

To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery.

Results

Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E. coli B0013-1030 (pta-ack, ldhA, pflB, xylH) by deletion of frdA, xylA and xylE. It exhibited robust growth on plates containing glucose, arabinose or galactose, but failed to grow on xylose. The ethanol synthesis pathway was then introduced into B0013-2012 to create an ethanologenic strain B0013-2012PA. In shaking flask fermentation, B0013-2012PA fermented glucose to ethanol with the yield of 48.4 g/100 g sugar while xylose remained in the broth. In a 7-l bioreactor, B0013-2012PA fermented glucose, galactose and arabinose in the simulated corncob hydrolysate to 53.4 g/l ethanol with the yield of 48.9 g/100 g sugars and left 69.6 g/l xylose in the broth, representing 98.6% of the total xylose in the simulated corncob hydrolysate.

Conclusions

By using newly constructed strain B0013-2012PA, we successfully developed an efficient bioprocess for ethanol production and xylose recovery from the simulated corncob hydrolysate.
  相似文献   

12.
Summary Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.  相似文献   

13.
Summary The catalytic effect on the acceleration of yeast fermentation by the presence of natural and homoionic zeolites was tested. The addition of 10–5 g/L of zeolite to the fermentation after inoculation increases the alcoholic fermentation rate both in laboratory and large scale processes.  相似文献   

14.
The 2,3-butanediol (2,3-BD) dehydrogenase gene (bdhA) of Bacillus licheniformis BL1 was disrupted to construct the tetramethylpyrazine (TMP)-producing BLA strain. During microaerobic fermentation, the bdhA-disrupted BLA strain produced 46.98 g TMP/l, and this yield was 23.99 % higher than that produced by the parent BL1 strain. In addition, the yield of acetoin, which is a TMP precursor, also increased by 28.98 % in BLA. The TMP production by BL1 was enhanced by supplementing the fermentation medium with 2,3-BD. The yield of TMP improved from 37.89 to 44.77 g/l as the concentration of 2,3-BD increased from 0 to 2 g/l. The maximum TMP and acetoin yields increased by 18.16 and 17.87 %, respectively with the increase in 2,3-BD concentration from 0 to 2 g/l. However, no increase was observed when the concentration of 2,3-BD in the matrix was ≥3 g/l. This study provides a valuable strategy to enhance TMP and acetoin productivity of mutagenic strains by gene manipulation and optimizing fermentation conditions.  相似文献   

15.
Summary A system coupling fermentor and decantor permitted strong accumulation of yeast flocs that were homogeneously suspended in the reactional volume. At 100–190 g/l glucose feed practically total substrate conversion was attained. At 130 g/l glucose feed the highest productivity (18.4 g.l.h) and the highest ethanol yield (90.6%) were reached with biomass levels of 80–90 g/l. We observed that the stability of this system is limited when a critical fermentation rate (D.So) close to 39–40 g/l.h (with corresponding ethanol productivities of 19–20 g/l.h) is reached. Higher fermentation rates provoked de-flocculation and lost of biomass.Symbols D dilution rate (h–1) - E ethanol (g/l) - Sr residual substrate (g/l) - So substrate in the feed (g/l) - X biomass (g/l) - ethanol yield (%) - DSo fermentation rate (g/l.h) (for Sr0) - PE ethanol productivity (g/l.h)  相似文献   

16.
Using corn meal as fermentation substrate, the effect of some factors, fermentation time and supplementation of saccharide and nitrogen sources as well as vegetable oil, on the sclerotia growth and carotenoid production of Penicillium sp PT95 during solid state fermentation were studied. When PT95 strain was grown on the amended medium by supplementing of 3g NaNO3, 10g maltose and 2.5g soybean oil per liter of salt solution to basal medium for 20 days, the dry sclerotia weight and carotenoid yield reached 9.70 g and 5260 g / 100 g of substrate, respectively. Without supplementation only 5.36g dry sclerotia and 2149g carotenoid / 100 g of substrate was attained. © Rapid Science Ltd. 1998  相似文献   

17.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

18.
Summary Sch 40873, a novel antifungal compound isolated from the fermentation broth of anActinomadura spp. was discovered in an assay designed to detect compounds with preferential activity against the invasive mycelial form ofCandida albicans. The geometric mean MIC of Sch 40873 against sevenCandida spp. in Sabouraud dextrose broth (yeast phase) was 58 g/ml and in Eagles minimum essential medium (mycelial phase) was <0.03 g/ml. Sch 40873 demonstrated slight in vivo topical activity in a hamster vaginal model.  相似文献   

19.
Production of nikkomycins (nucleoside antibiotics inhibiting chitin synthesis) by Streptomyces tendae (ATCC 31160) was considerably enhanced by addition of fermentation wastes of Bacillus thuringiensis var. kurstaki (HD 263) to the basal soymannitol medium. Analysis of this fermentation broth for nucleic acid derivatives showed that they contained about 0·8 g/l of various nucleosides and bases (uracil 0·43 g/l; hypoxanthine 0·21 g/l; as well as uridine, cytosine and adenine).  相似文献   

20.
Summary The recent models of the Acetone-Butanol fermentation did not adequately describe the culture inhibition by the accumulating metabolites and were unable to simulate the acidogenic culture dynamics at elevated pH levels. The present updated modification of the model features a generalised inhibition term and a pH dependent terms for intracellular conversion of undissociated acids into solvent products. The culture dynamics predictions by the developed model compared well with experimental results from an unconventional acidogenic fermentation ofC. acetobutylicum.Nomenclature A acetone concentration in the fermentation broth, [g/L] - AA total concentration of dissociated and undissociated acetic acid, [g/L] - AA undiss concentration of undissociated acetic acid, [g/L] - APS Absolute Parameter Sensitivity - AT acetoin concentration in the fermentation broth, [g/L] - B butanol concentration in the fermentation broth, [g/L] - BA total concentration of dissociated and undissociated butyric acid, [g/L] - BA undiss concentration of undissociated butyric acid, [g/L] - E ethanol concentration in the fermentation broth, [g/L] - f(T) inhibition function as defined in Equation (2) - k 1 constant in Equation (4), [g substrate/g biomass] - k 2 constant in Equation (4), [g substrate/(g biomass.h)] - k 1 constant in Equation (5), [g substrate/(g biomass] - k 2 constant in Equation (5), [g substrate/(g biomass.h)] - k 3 constant in Equation (6), [g butyric acid/g substrate] - k 4 constant in Equation (6), [g butyric acid/(g biomass.h)] - k 5 constant in Equation (7), [g butanol/g substrate] - k 6 constant in Equation (8), [g acetic acid/g substrate] - k 7 constant in Equation (8), [g acetic acid/(g biomass.h)] - k 8 constant in Equation (9), [g acetone/g substrate] - k 9 constant in Equation (10), [g ethanol/g substrate] - k 10 constant in Equation (11), [g acetoin/g substrate] - k 11 constant in Equation (12), [g lactic acid/g substrate] - K I Inhibition constant, [g inhibitory products/L] - ke maintenance energy requirement for the cell, [g substrate/(g biomass.h)] - K AA acetic acid saturation constant, [g acetic acid/L] - K BA butyric acid saturation constant, [g butyric acid/L] - K S Monod's saturation constant, [g substrate/L] - LA lactic acid concentration in the fermentation broth, [g/L] - m i ,n i constants in Equation (14) - n empirical constant, dependent on degree of inhibition. - P concentration of inhibitory products (B+BA+AA), [g/L] - P max maximum value of product concentration to inhibit the fermentation, [g/L] - pKa equilibrium constant - r A rate of acetone production, [g acetone/L.h] - r AA rate of acetic acid production, [g acetic acid/L.h] - r AT rate of acetoin production, [g acetoin/L.h] - r B rate of butanol production, [g butanol/L.h] - r BA rate of butyric acid production, [g butyric acid/L.h] - r E rate of ethanol production, [g ethanol/L.h] - RPS Relative Parameter Sensitivity - r LA rate of lactic acid production, [g lactic acid/L.h] - r S dS/dt=total substrate consumption rate, [g substrate/L.h] - r S substrate utilization rate, [g substrate/L.h] - S substrate concentration in the fermentation broth, [g substrate/L] - S 0 initial substrate concentration, [substrate/L] - t time, [h] - X biomass concentration, [g/L] - Y X yield of biomass with respect to substrate, [g biomass/g substrate] - Y P i yield of metabolic product with respect to substrate, [g product/g substrate] Derivatives dX/dt rate of biomass production, [g biomass/L.h] - dP i /dt rate of product formation, [g product/L.h] Greek letters specific growth rate of the culture, [h–1] - I specific growth rate of the culture in the presence of the inhibitory products, [h–1] - µmax maximum specific growth rate of the culture, [h–1]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号