首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The trophic link between bacteria and bacterivorous protists is a complex interaction that involves feedback of inorganic nutrients and growth substrates that are immeadiately available for prey growth. These interactions were examined in the laboratory and in incubations of concentrated natural assemblages of bacterioplankton. Growth dynamics of estuarine and marine bacterivorous protists were determined in laboratory culture using Vibrio natriegens as prey and were compared to growth of protists on bacterioplankton assemblages concentrated by tangential flow filtration from four northwest Florida Estuaries. Biomass transfers from bacteria to protists were monitored by tracing elemental carbon and nitrogen in particulate fractions of protist added and grazer free controls. Gross growth efficiencies of the protists on naturally occurring bacteria were within the range determined in lab estimates of growth efficiency on cultured bacteria (50%). However, bacterial response to protist excretion products was different in the lab and field incubations, and bacterial growth contributed to the biomass available to protists in the field incubations. As determined by radioisotope-labeled substrate incorporation, a time lag in bacterial reponse to protist excretion products was observed for laboratory batch cultures, allowing accurate estimation of growth efficiency. In incubations with concentrated natural bacterial assemblages, bacterial growth response coincided with protist growth and excretion. The additional bacterial production on protist excretion products reached a maximum of 2–3-fold higher than protist-free controls. In addition, ammonium concentrations increased with protist grazing and growth in lab cultures, but ammonium excreted by protists in concentrates did not accumulate. The C:N values for the bacterial concentrates suggests that these bacteria were nitrogen limited. It is speculated that dissolved organic carbon, concentrated by tangential flow filtration (> 100,000 MW membrane) with the bacterioplankton, was utilized by bacteria when nitrogen was supplied as ammonium and amino acids from protist excretion. Thus, estimates of protist growth efficiency on naturally occurring bacterioplankton, corrected for protist-stimulated bacterial production, were in the range of 13–21%.  相似文献   

3.
Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low temperatures, extreme shade, hypersalinity, and 24-hour darkness during the winter 1. These extreme environmental conditions limit the biota in Lake Bonney almost exclusively to microorganisms 2.Single-celled microbial eukaryotes (called "protists") are important players in global biogeochemical cycling 3 and play important ecological roles in the cycling of carbon in the dry valley lakes, occupying both primary and tertiary roles in the aquatic food web. In the dry valley aquatic food web, protists that fix inorganic carbon (autotrophy) are the major producers of organic carbon for organotrophic organisms 4, 2. Phagotrophic or heterotrophic protists capable of ingesting bacteria and smaller protists act as the top predators in the food web 5. Last, an unknown proportion of the protist population is capable of combined mixotrophic metabolism 6, 7. Mixotrophy in protists involves the ability to combine photosynthetic capability with phagotrophic ingestion of prey microorganisms. This form of mixotrophy differs from mixotrophic metabolism in bacterial species, which generally involves uptake dissolved carbon molecules. There are currently very few protist isolates from permanently ice-capped polar lakes, and studies of protist diversity and ecology in this extreme environment have been limited 8, 4, 9, 10, 5. A better understanding of protist metabolic versatility in the simple dry valley lake food web will aid in the development of models for the role of protists in the global carbon cycle.We employed an enrichment culture approach to isolate potentially phototrophic and mixotrophic protists from Lake Bonney. Sampling depths in the water column were chosen based on the location of primary production maxima and protist phylogenetic diversity 4, 11, as well as variability in major abiotic factors affecting protist trophic modes: shallow sampling depths are limited for major nutrients, while deeper sampling depths are limited by light availability. In addition, lake water samples were supplemented with multiple types of growth media to promote the growth of a variety of phototrophic organisms.RubisCO catalyzes the rate limiting step in the Calvin Benson Bassham (CBB) cycle, the major pathway by which autotrophic organisms fix inorganic carbon and provide organic carbon for higher trophic levels in aquatic and terrestrial food webs 12. In this study, we applied a radioisotope assay modified for filtered samples 13 to monitor maximum carboxylase activity as a proxy for carbon fixation potential and metabolic versatility in the Lake Bonney enrichment cultures.  相似文献   

4.
A model food chain was established to investigate the influence of grazing by flagellates on bacteria degrading toluene in batch culture. The rate of toluene consumed by a Pseudomonas sp. strain PS+ (max. 0.37 fmol cell(-1) h(-1)) was significantly higher in the presence of the bacterivorous flagellate Heteromita globosa (max. 1.38 fmol cell(-1) h(-1)). A maximum increase of up to 7.5 times was observed in the rate of toluene consumed by these bacteria during exponential growth of this flagellate. Carbon conversion efficiency (CCE) of bacteria to flagellate biomass was estimated to be 33.4% based on measured biovolumes and published values for carbon contents. However, the CCE for toluene-derived carbon was lower (max. 4.9%) when calculations were based on incorporation of [ring-U-(14)C]toluene into biomass of flagellates grazing on labelled bacteria. The findings suggest a potential role for flagellates in bioremediation processes.  相似文献   

5.
Many experimental studies on detritus decomposition revealed a comparable microbial succession after the addition of a substrate pulse: from small, freely suspended single bacteria at the beginning, to more complex and larger growth forms during a later stage, accompanied by the appearance of bacterivorous protists. We examined in three model experiments with different organic carbon sources whether this shift in bacterial size structure is linked to the grazing impact of bacterivores. In short‐term (8–10 d) microcosm experiments we added natural dissolved and particulate detritus (macrophyte leaves and leachate, dead phytoplankton cells) as an organic substrate source. By the use of size‐fractionated inocula and eucaryotic inhibitors we obtained treatments without protists, in which bacteria developed without predation. These were compared, by measurements of bacterial activity and microscopical analysis of bacterial size structure, to incubations in which either cultured heterotrophic nanoflagellates or a natural protist assemblage was included in the inoculum. The presence of bacterial grazers resulted in a 50–90% reduction of bacterial biomass compared to grazer‐free trials. The selective removal of freely suspended bacteria produced a very different relative composition of bacterial biomass: it became dominated by large, grazing‐resistant forms such as filaments and cells attached to particles or clustered in small aggregates. In grazer‐free treatments, bacterial biomass was always dominated (>80%) by free‐living, single bacterial cells. The time course of the bacterial development suggested different underlying mechanisms for the appearance of predation resistant filamentous and of aggregated or attached bacteria. As bacterial aggregates developed in approximately similar amounts with and without grazers no specific growth stimulation by protists could be detected. In contrast, concentrations of filamentous bacteria were 2–10 times higher in treatments with protists, thus indicating a stimulation of this growth form during enhanced grazing pressure. Measurements of ectoenzymatic activity and H‐leucine uptake indicated that microbial activity was also shifted to larger size fractions. In most cases more than 50% of bacterial activity in treatments with protists was associated with the size fraction>10 μm whereas this value was <2% without grazers. Grazing by protists also enhanced the specific activity of the bacterial assemblage which is in contrast to an assumed lower competitive ability of complex bacterial growth forms. The results imply that the selective force of bacterivory in nutrient‐rich environments changes the structure and possibly the function of aquatic bacteria and their position in the food web, making protist‐resistant bacteria more vulnerable to metazoan filter feeders and detritivores, and possibly also subject to sedimentation.  相似文献   

6.
Microcosms were inoculated with sediments from both a petroleum-hydrocarbon (PHC)-contaminated aquifer and from a nearby pristine aquifer and incubated under anoxic denitrifying conditions with [methyl-13C]toluene. These microcosms served as a laboratory model system to evaluate the combination of isotope (13C-labeling of polar-lipid-derived fatty acids) and molecular techniques (16S rRNA-targeting gene probes) to identify the toluene-metabolizing population. After total depletion of toluene, the following bacterial phospholipid fatty acids (PLFA) were 13C-enriched: 16:1omega7c, 16:1omega7t, 16:0, cy17:0, and 18:1omega7c. Pure culture experiments demonstrated that these compounds were also found in PLFA profiles of PHC-degrading Azoarcus spp. (beta-Proteobacteria) and related species. The origin of the CO2 evolved in the microcosms was determined by measurements of stable carbon isotope ratios. Toluene represented 11% of the total pool of mineralized substrates in the contaminated sediment and 54% in the pristine sediment. The microbial community in the microcosm incubations was characterized by using DAPI staining and whole-cell hybridization with specific fluorescently labeled 16S rRNA-targeted oligonucleotide probes. Results revealed that 6% of the DAPI-stained cells in the contaminated sediment and 32% in the pristine sediment were PHC-degrading Azoarcus spp. In biotic control microcosms (incubated under denitrifying conditions, no toluene added), Azoarcus spp. cells remained at less than 1% of the DAPI-stained cells. The results show that isotope analysis in combination with whole-cell hybridization is a promising approach to identify and to quantify denitrifying toluene degraders within microbial communities.  相似文献   

7.
A time series phospholipid fatty acid (PLFA) 13C-labeling study was undertaken to determine methanotrophic taxon, calculate methanotrophic biomass, and assess carbon recycling in an upland brown earth soil from Bronydd Mawr (Wales, United Kingdom). Laboratory incubations of soils were performed at ambient CH4 concentrations using synthetic air containing 2 parts per million of volume of 13CH4. Flowthrough chambers maintained a stable CH4 concentration throughout the 11-week incubation. Soils were analyzed at weekly intervals by gas chromatography (GC), GC-mass spectrometry, and GC-combustion-isotope ratio mass spectrometry to identify and quantify individual PLFAs and trace the incorporation of 13C label into the microbial biomass. Incorporation of the 13C label was seen throughout the experiment, with the rate of incorporation decreasing after 9 weeks. The delta13C values of individual PLFAs showed that 13C label was incorporated into different components to various extents and at various rates, reflecting the diversity of PLFA sources. Quantitative assessments of 13C-labeled PLFAs showed that the methanotrophic population was of constant structure throughout the experiment. The dominant 13C-labeled PLFA was 18:1omega7c, with 16:1omega5 present at lower abundance, suggesting the presence of novel type II methanotrophs. The biomass of methane-oxidizing bacteria at optimum labeling was estimated to be about 7.2 x 10(6) cells g(-1) of soil (dry weight). While recycling of 13C label from the methanotrophic biomass must occur, it is a slower process than initial 13CH4 incorporation, with only about 5 to 10% of 13C-labeled PLFAs reflecting this process. Thus, 13C-labeled PLFA distributions determined at any time point during 13CH4 incubation can be used for chemotaxonomic assessments, although extended incubations are required to achieve optimum 13C labeling for methanotrophic biomass determinations.  相似文献   

8.
The abundance and biomass of the main components of the microbial plankton food web (“microbial loop”)—heterotrophic bacteria, phototrophic picoplankton and nanoplankton, heterotrophic nanoflagellates, ciliates and viruses, production of phytoplankton and bacterioplankton, bacterivory of nanoflagellates, bacterial lysis by viruses, and the species composition of protists—have been determined in summer time in the Sheksna Reservoir (the Upper Volga basin). A total of 34 species of heterotrophic nanoflagellates from 15 taxa and 15 species of ciliates from 4 classes are identified. In different parts of the reservoir, the biomass of the microbial community varies from 26.2 to 64.3% (on average 45.5%) of the total plankton biomass. Heterotrophic bacteria are the main component of the microbial community, averaging 63.9% of the total microbial biomass. They are the second (after the phytoplankton) component of the plankton and contribute on average 28.6% to the plankton biomass. The high ratio of the production of heterotrophic bacteria to the production of phytoplankton indicates the important role of bacteria, which transfer carbon of allochthonous dissolved organic substances to a food web of the reservoir.  相似文献   

9.
White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 mum in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1omega7c/t (67%), 18:1omega7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The delta13C value of total biomass was -28.6 per thousand; those of individual fatty acids were -29.4 to -33.7 per thousand. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have delta13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations.  相似文献   

10.
We studied the effects of predation on the cytometric and phylogenetic features of two enriched bacterial communities obtained from two cultures of marine heterotrophic nanoflagellates: Jakoba libera and a mixed culture of Cafeteria sp. and Monosiga sp. Protists were harvested by flow cytometric cell sorting and eight different treatments were prepared. Each bacterial community was incubated with and without protists, and we added two treatments with protists and the bacteria present after the sorting procedure (cosorted bacteria). The bacterial community derived from the culture of Jakoba libera had higher green fluorescence per cell (FL1) than that derived from the mixed culture of Cafeteria sp. and Monosiga sp. When the experiment began all treatments presented bacterial communities that increase in fluorescence per bacterium (FL1); after that the FL1 decreased when bacteria attained maximal concentrations; and, finally, there was a new increase in FL1 toward the end of the experiment. Cosorted bacteria of Jakoba libera had the same fluorescence as the bacterial community derived from this protist, while the bacteria derived from the mixed culture of Cafeteria sp. and Monosiga sp. was nearly twice as fluorescent than that of the parental community. All treatments presented a general decline of SSC along the incubation. Therefore, there was a small influence of protists on the cytometric signature of each bacterial community. However, each bacterial community preyed by Jakoba libera or the mixed culture of Cafeteria sp. and Monosiga sp. led to four different phylogenetic fingerprint. Besides, the final Communities were different from the fingerprint of controls without protists, and most of them diverge from the fingerprint of cosorted bacteria. Our results confirm that changes in the phylogenetic composition of marine bacterial communities may depend on the initial communities of both bacteria and protists.  相似文献   

11.
Bacterial populations and pathways involved in acetate and propionate consumption were studied in anoxic brackish sediment from the Grosser Jasmunder Bodden, German Baltic Sea. Uptake of acetate and propionate from the porewater was studied using stable carbon isotope-labeled compounds. Labeled acetate was not produced as an intermediate during propionate uptake experiments, and propionate consumption was not affected by the addition of acetate. In parallel, incorporation of labeled acetate and propionate into phospholipid-derived fatty acids (PLFA) was studied to indicate bacterial populations involved in the consumption of these substrates. The (13)C-acetate label was mainly recovered in even-numbered PLFA (16:1omega7c, 16:0 and 18:1omega7c). In contrast, primarily odd-numbered PLFA (a15:0, 15:0, 17:1omega6 and 17:0) and the even-numbered i16:0 were labeled after incubation with (13)C-propionate. Although single PLFA labeled with propionate are commonly found in sulfate reducers, the complete PLFA-labeling pattern does not resemble any of the know strains. However, the acetate-labeling pattern is similar to Desulfotomaculum acetoxidans and Desulfofrigus spp., two acetate-consuming, sulfate reducers. In conclusion, our data suggest that acetate and propionate were predominantly consumed by different, specialized groups of sulfate-reducing bacteria.  相似文献   

12.
We investigated the impact of fish farm biodeposition on benthic bacteria, thraustochytrid protists, and heterotrophic protozoa (nanoflagellates and ciliates) in an oligotrophic area of the Mediterranean Sea. The fish farm impact was investigated both on a seagrass (Posidonia oceanica) bed and on soft bottom sediments. In both systems, sediment samples were collected with a multicontrol sampling strategy (i.e., beneath the fish farm and at three control sites per system). The uneaten food pellets supplied to the fish determined the accumulation of sediment organic matter and the enhancement of protein content in impacted sediments (both seagrass bed and soft sediments). In both systems, the abundance and biomass of heterotrophic protists increased significantly beneath the fish farm, but the structure of the protist assemblages responded differently in vegetated and unvegetated sediments. Thraustochytrid abundance increased significantly in impacted seagrass. These results provide evidence that the structure of protist assemblages respond significantly to fish farm biodeposition and indicate that the monitoring of these benthic components provides complementary information for the assessment of the fish farm impact on the benthic systems.  相似文献   

13.
Dynamics of autotrophic and heterotrophic prokaryotes and theirconsumption by nanoflagellates were studied in the euphoticzone at nine stations located from the Levantine Basin (34°E)to the Balearic sea (5°E) in June 1999. Bacterial biomassconstituted the largest proportion of living biomass at allstations. Integrated bacterial production at the furthest eaststation, was sixfold lower than integrated bacterial productionat the furthest west (13 and 75 mg C m-2 d-1 respectively).Estimated heterotrophic nanoflagellate bacterivory accountedfor 45–87% of bacterial production. Small protists (<3µm) dominated the bacterivore assemblage and accountedfor more than 90% of the heterotrophic bacterial consumption.Our results indicated that there was no negative selection againstSynechococcus and that both picoplankton groups were grazedaccording to their standing stocks. An estimated consumptionof Synechococcus derived from food vacuole content analysisof nanoflagellates revealed that they consumed from 0.5 to 45%(mean 13%) of Synechococcus stock per day. These data are amongthe first documenting the relative grazing impact of heterotrophicnanoflagellates on bacteria and Synechococcus in situ. Assumingthat there was no selection for or against Prochlorococcus,heterotrophic nanoflagellates could ingest from 1.4 to 21% (mean6%) of Prochlorococcus stock per day. The amount of organiccarbon obtained by heterotrophic nanoflagellates from photosyntheticprokaryotes represented 27% of the total amount of carbon obtainedfrom total prokaryotes  相似文献   

14.
The structure and summertime production of planktonic communities and the role of nondiatom planktonic cells were studied in coastal ponds, which are areas traditionally used for fattening and greening table-sized oysters. The abundance and biomass of nano–microplanktonic protists were determined at weekly intervals between February 1998 and February 1999 in a coastal pond without oysters in the French Atlantic coast near La Rochelle. The production of these microbiotas was determined in the summer period. The structure of plankton communities revealed the following observations: (1) microphytoplanktonic cells were mostly diatoms and dinoflagellates, (2) microzooplanktonic cells were mainly ciliates, and (3) nanoplanktonic cells were represented by pigmented (80–90% of the nanoplankton biomass) and colorless nanoflagellates. Diatoms were dominated by Naviculiineae. Dinoflagellates were dominated by Peridiniales. Oligotrichida were predominant in the ciliate community. Protist biomass levels were nine times higher from April to August (summer period 1033 μg C L−1) than from September to March (winter period 114 μg C L−1). Whatever the season, nanoflagellates were dominant in the water column (66 and 53% of the entire protist biomass in the summer and winter periods, respectively). Nanoflagellates represented the highest production of nano–microplanktonic communities (76% of carbon protist production) in the coastal pond in summer and showed the shortest generation time (7.1 h). Dinoflagellates came after nanoflagellates in production (19.5% of carbon protist production). Diatoms represented only a supplementary carbon resource available for higher trophic levels, whereas, until now, they were considered as the principal food of oysters in coastal ponds. Ciliates were a small source of carbon, but their growth rate was high. We suggest, first, that nanoflagellates represented the primary resource available in the pond and could constitute an important food resource for higher trophic levels, such as oysters, farmed in this type of pond. Overall, the system appeared to be more autotrophic than heterotrophic. Because inorganic nutrients are quickly exhausted in a semiclosed pond, pigmented flagellates dominated the carbon biomass, production and biomass of bacteria were high (thus, the microbial food web appeared to be active in this pond), and mixotrophy seemed to be an important trophic mode there.  相似文献   

15.
Inland aquatic ecosystems play a critical role in the global carbon cycle, processing a great fraction of the organic matter coming from terrestrial ecosystems, and the microbial food web is crucial in this process. Thus, we aimed to evaluate whether the food resource of planktonic protozoa comes mainly from small primary producers or heterotrophic bacteria in tropical shallows lakes, assuming the hypothesis that, in general, picocyanobacteria would be the main food resource for protists. We also expected that the autotrophic fraction would be mainly related to protists at the surface of the environments, while the heterotrophic fraction would be more important at the lower strata of the water column. We performed size-fractionation experiments to evaluate the effects of predation of protists on heterotrophic bacteria and picocyanobacteria. We also sampled planktonic organisms at the subsurface and bottom of 20 lakes in a Neotropical floodplain. We found an herbivory preference of heterotrophic flagellates, while ciliates seem to exert a stronger impact on heterotrophic bacteria. We also found no relationship between heterotrophic bacteria and protists in the field data, whereas positive relationships between picocyanobacteria and protists were observed in environments where there was sunlight. Thus, both heterotrophic bacteria and picocyanobacteria were important components in the food webs of tropical shallow lakes. Moreover, the trophic cascade caused by zooplankton predation suggests that protists are efficient in transferring the energy from the base of microbial food webs to higher trophic levels.  相似文献   

16.
The use of small-subunit rRNA-based oligonucleotides as probes for detecting marine nanoplanktonic protists was examined with a ciliate (an Uronema sp.), a flagellate (a Cafeteria sp.), and mixed assemblages of protists from enrichment cultures and natural seawater samples. Flow cytometry and epifluorescence microscopy analyses demonstrated that hybridizations employing fluorescein-labeled, eukaryote-specific probes intensely stained logarithmically growing protists, whereas these same protist strains in late stationary growth were barely detectable. The fluorescence intensity due to probe binding was significantly enhanced by the use of probes end labeled with biotin, which were detected by fluorescein-labeled avidin. The degree of signal amplification ranged from two- to fivefold for cultured protists in both logarithmic and stationary growth phases. Mixed assemblages of heterotrophic protists from enrichment cultures were also intensely labeled by rRNA-targeted oligonucleotide probes by the biotin-avidin detection system. Protists in late stationary growth phase and natural assemblages of protists that were otherwise undetectable when hybridized with fluorescein-labeled probes were easily visualized by this approach. In the latter samples, hybridization with multiple, biotin-labeled probes was necessary for detection of naturally occurring marine protists by epifluorescence microscopy. The signal amplification obtained with the biotin-avidin system should increase the utility of rRNA-targeted probes for identifying protists and facilitate characterization of the population structure and distribution of protists in aquatic environments.  相似文献   

17.
Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 microM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the 13C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as 13C-enriched PLFA were common (16:0, 16:1, 18:1omega7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utilizable substrate, resulted in widespread incorporation consistent with the higher extent of 13C-incorporation (approximately 10 times) into PLFA compared with 13C-acetate or 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyruvate slurries were similar to each other and to those that developed in the 13C-glucose slurry after 4 days. These were more diagnostic, with branched odd-chain fatty acids (i15:0, a15:0 and 15:1omega6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the 13C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In contrast, analysis of DGGE bands from 13C-DNA demonstrated that the candidate division JS1 and Firmicutes were actively assimilating 13C-acetate. Denaturing gradient gel electrophoresis also confirmed the presence of JS1 in the 13C-DNA from the 13C-glucose slurry. These results demonstrate that JS1, originally found in deep subsurface sediments, is more widely distributed in marine sediments and provides the first indication of its metabolism; incorporation of acetate and glucose (or glucose metabolites) under anaerobic, sulfate-reducing conditions. Here we demonstrate that PLFA- and DNA-SIP can be used together in a sedimentary system, with low concentrations of 13C-substrate and overlapping incubation times (up to 7 days) to provide complementary, although not identical, information on carbon flow and the identity of active members of an anaerobic prokaryotic community.  相似文献   

18.
以我国南亚热带格木、红椎和马尾松人工林为对象,采用氯仿熏蒸浸提法和磷脂脂肪酸法(PLFA)分析了林地土壤微生物生物量和微生物群落结构组成.结果表明: 林分和季节因素均显著影响土壤微生物生物量、总PLFAs量、细菌PLFAs量和真菌PLFAs量,且干季林分下的土壤微生物生物量、总PLFAs量、单个PLFA量均大于雨季.红椎人工林土壤微生物生物量碳(MBC)和总PLFAs量最高,而格木人工林土壤微生物生物量氮(MBN)最高.土壤pH值对土壤丛枝菌根真菌(16:1ω5c)的影响达到极显著正相关水平.土壤总PLFAs量、革兰氏阳性菌(G+)以及腐生真菌(18:2ω6,9c)、革兰氏阳性菌/革兰氏阴性菌(G+/G-)与土壤有机碳、全氮和全磷显著相关,表明土壤有机碳、全氮、全磷含量是影响该地区土壤微生物数量和种类的重要因素.外生菌根真菌(18:1ω9c)和丛枝菌根真菌与土壤碳氮比值呈极显著相关.  相似文献   

19.
Lipid biomarker analysis has proven valuable in testing the hypothesis that attributes of the extant microbiota can directly reflect the occurrence of contaminant biodegradation. Two past research efforts have demonstrated this utility and are described here. A 4.5 m vertical core was obtained from a diesel fuel oil contamination plume. Core material was assayed for total petroleum hydrocarbons (TPH) and bacterial membrane phospholipids (PLFA) via a single solvent extraction. Microbial viable biomass and the relative abundance of Gram-negative bacterial PLFA biomarkers were found to be significantly correlated with TPH concentration. The core TPH profile also revealed two distinct areas where the average TPH level of 3,000 microg g(-1) fell to near detection limits. Both areas were characterized by a three-fold decrease in the hexadecane/pristane ratio, indicating alkane biodegradation, and a distinct PLFA profile that showed a close similarity to the uncontaminated surface soil. Low-order, incomplete detonations can deposit hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) into training range surface soils. Since surface soils are exposed to temporal and diurnal moisture cycles, we investigated the effect two very different soil moisture tensions had on the in situ microbiota and RDX biodegradation. Saturated soils were characterized by rapid RDX biodegradation, 4 day half-life, a decrease in number of species detected and increase in PLFA biomarkers for Gram-negative proteobacteria (n16:1omega7c, n18:1omega9c, and n18:1omega7c) and Gram-positive firmicutes (i15:0 and a15:0). Terminal restriction fragment length polymorphism (T-RFLP) profiles of endpoint microbial communities indicated a shift from 18 to 36% firmicutes, the loss of gamma-proteobacteria and the emergence of alpha-proteobacteria. These two past research efforts demonstrated the utility of the lipid biomarker analysis in identifying microbial community characteristics that were associated with two very different soil contaminants. Lipid biomarkers defined areas of TPH biodegradation and identified community shifts as a result of soil conditions that affected explosives fate. Information like this can be used to enhance the predictive power of ecological models such as the Army Training and Testing Area Carrying Capacity for munitions model [ATTACC].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号