首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 328 毫秒
1.
构建了共表达烟酸转磷酸核糖激酶(NAPRTase)和丙酮酸羧化酶(PYC)的重组质粒pTrc99a-pncB-pyc,并考察了重组菌E.coli NZN111/pTrc99a-pncB-pyc生产丁二酸的能力。结果表明:重组菌NZN111/pTrc99a-pncB-pyc的NAPRTase和PYC的比酶活达到最高,分别为20.75和1.04 U/mg,同时,辅酶NADH、NAD+及NAD(H)总量达到最高。厌氧摇瓶发酵结果:48 h能够消耗17.5 g/L的葡萄糖生成14.08 g/L的丁二酸,而丙酮酸的产量大幅度降低,仅为0.11 g/L。本研究为基因工程菌大肠杆菌厌氧条件下发酵生产丁二酸提供了一定的基础。  相似文献   

2.
考察了E.coli NZN111及其重组菌株E.coli NZN111/pTrc99a-pncB发酵生产丁二酸的性能。E.coli NZN111两阶段发酵丁二酸的同时,会造成丙酮酸的大量积累。研究发现:通过过量表达烟酸转磷酸核糖激酶,两阶段发酵重组菌株E.coli NZN111/pTrc99a-pncB,减少丙酮酸的积累且无副产物乙酸生成,提高丁二酸的产量,丁二酸得率和耗糖速率分别提高了139%和20%。  相似文献   

3.
大肠杆菌NZN111是敲除了乳酸脱氢酶的编码基因(ldhA)和丙酮酸-甲酸裂解酶的编码基因(pflB)的发酵生产丁二酸的潜力菌株。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。nadD为催化NAD(H)合成途径中烟酸单核苷酸(NaMN)生成烟酸腺嘌呤二核苷酸(NaAD)的烟酸单核苷酸腺苷酰转移酶(Nicotinic acid mononucleotide adenylyltransferase,NAMNAT)的编码基因,通过过量表达nadD基因能够提高NAD(H)总量与维持合适的NADH/NAD+比例。文中构建了重组菌E.coli NZN111/pTrc99a-nadD,在厌氧摇瓶发酵过程中通过添加终浓度为1.0 mmol/L的IPTG诱导表达,重组菌E.coli NZN111/pTrc99a-nadD中NAD+和NADH的浓度分别比宿主菌E.coli NZN111提高了3.21倍和1.67倍,NAD(H)总量提高了2.63倍,NADH/NAD+从0.64降低为0.41,使重组菌株恢复了厌氧条件下生长和代谢葡萄糖的能力。重组菌与对照菌相比,72 h内可以消耗14.0 g/L的葡萄糖产6.23 g/L的丁二酸,丁二酸产量增加了19倍。  相似文献   

4.
大肠杆菌BA002是敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸-甲酸裂解酶的编码基因 (pflB) 的工程菌。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。pncB是烟酸转磷酸核糖激酶 (NAPRTase) 的编码基因,通过过量表达pncB基因能够提高NAD(H)总量与维持合适的NADH/NAD+,从而恢复了厌氧条件下重组菌E. coli BA014 (BA002/pTrc99a-pncB) 的生长和产丁二酸的性能。然而,BA014在厌氧发酵过程中有大量丙酮酸积累,为进一步提高菌株的丁二酸生产能力,减少副产物丙酮酸的生成,共表达NAPRTase和来自于乳酸乳球菌 NZ9000中丙酮酸羧化酶 (PYC) 的编码基因pyc,构建了重组菌E. coli BA016 (BA002/pTrc99a-pncB-pyc)。3 L发酵罐结果表明,BA016发酵112 h后,共消耗了35.00 g/L的葡萄糖。发酵结束时,菌体OD600为4.64,产生了25.09 g/L丁二酸。通过共表达pncB和pyc基因,使BA016的丙酮酸积累进一步降低,丁二酸产量进一步提高。  相似文献   

5.
过量表达苹果酸脱氢酶对大肠杆菌NZN111产丁二酸的影响   总被引:2,自引:1,他引:1  
大肠杆菌NZN111是敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸-甲酸裂解酶的编码基因 (pflB) 的工程菌,厌氧条件下由于辅酶NAD(H) 的不平衡导致其丧失了代谢葡萄糖的能力。构建了苹果酸脱氢酶的重组菌大肠杆菌NZN111/pTrc99a-mdh,在厌氧摇瓶发酵过程中通过0.3 mmol/L的IPTG诱导后重组菌的苹果酸脱氢酶 (Malate dehydrogenase,MDH) 酶活较出发菌株提高了14.8倍,NADH/NAD+的比例从0.64下降到0.26,同时NAD+和NADH浓度分别  相似文献   

6.
野生型E.coli K12能够在厌氧条件下代谢木糖生长,但是丁二酸不是其主要的代谢终产物。而在E.coli BA203(Δldh A,Δpfl B,Δppc)中,通过过量表达磷酸烯醇式丙酮酸羧化激酶(PCK),即E.coli BA204,使其能够在厌氧条件下利用木糖发酵生产丁二酸。为了进一步提高生物量及丁二酸的产量,通过过量表达烟酸转磷酸核糖激酶(NAPRTase)提高NAD(H)的生成,从而提高木糖代谢速率。因此采用2种方法构建了共表达烟酸转磷酸核糖激酶和磷酸烯醇式丙酮酸羧化激酶的基因工程菌,即E.coli BA208(BA203/p Trc99a-pnc B-pck)和E.coli BA209(BA203/p Trc99a-pck-trc-pnc B)。通过实验发现:厌氧发酵72 h,BA209消耗16.7 g/L木糖,生成15.8 g/L丁二酸,乙酸含量有所降低,而丙酮酸的量几乎不变。BA209中NAD(H)总量和ATP含量较BA208和BA204都有明显的提高。这为考察NAD(H)和ATP 2种辅因子对重组大肠杆菌利用木糖合成丁二酸的影响提供了研究平台。  相似文献   

7.
为了考察过量表达苹果酸酶对于E.coli NZN111(ldhA::Kan pfl::Cam)厌氧发酵产丁二酸的影响, 将连接有苹果酸酶基因sfcA的表达载体pTrc99a-sfcA转化进NZN111中, 构建了重组NZN111(pTrc99a-sfcA)。0.5 mmol/L IPTG诱导8 h后, 测定的苹果酸酶比酶活为30.67 u/mg, 比受体菌提高了140倍。采用两阶段发酵模式, 结果表明: 过量表达的苹果酸酶在NZN111体内催化了从丙酮酸到苹果酸的逆向反应, 丁二酸是发酵过程中积累的主要有机酸, 且当加入0.7 mmol/L IPTG诱导, 初始葡萄糖糖浓度为18.5 g/L时, 选择对数生长期后期的菌种以10%的接种量转入厌氧发酵, 发酵结束时发酵液中丁二酸的浓度为12.84 g/L, 对葡萄糖的收率为69.43%, 乙酸为0.58 g/L, 二者浓度比为22:1, 没有检测到甲酸和乳酸。构建的菌种具有高产丁二酸和副产物极少的优点, 在同类菌种中处于先进水平。  相似文献   

8.
富含蔗糖的甘蔗糖蜜可作为制备丁二酸的廉价原料。然而生产丁二酸的潜力菌株大肠杆菌Escherichia coli AFP111不能代谢蔗糖。为了使其具有蔗糖代谢能力,将E.coli W中非PTS蔗糖利用系统蔗糖通透酶的编码基因csc B,果糖激酶的编码基因csc K和蔗糖水解酶的编码基因csc A克隆并表达到AFP111中,获得重组菌株AFP111/p MD19T-csc BKA。经厌氧发酵验证,重组菌株72 h消耗20 g/L蔗糖,丁二酸产量达到12 g/L。在3L发酵罐中采用有氧阶段培养菌体、厌氧阶段发酵的两阶段发酵方式,厌氧发酵30 h,重组菌株以蔗糖和糖蜜为碳源丁二酸产量分别为34 g/L和30 g/L。结果表明,通过外源引入非PTS蔗糖利用系统,重组菌株具有较强的代谢蔗糖生长及合成丁二酸的能力,并且能够利用廉价糖蜜发酵制备丁二酸。  相似文献   

9.
研究了在好氧培养基中分别添加不同碳源对两阶段发酵菌体生长、酶活及代谢产物分布的影响,结果表明添加4mmol/L葡萄糖和12,54,80mmol/L乙酸钠均可以提高好氧阶段的菌体密度和相关酶活。将不同条件下培养的菌体转接厌氧发酵后,厌氧阶段的酶活和代谢产物分布也发生改变。进一步对酶活及代谢产物分析表明:Escherichia coli NZN111(sfcA)厌氧发酵过程中,磷酸烯醇式丙酮酸羧化激酶(PCK)是产丁二酸的关键酶,丙酮酸激酶(PYK)主要和副产物丙酮酸的积累有关,异柠檬酸裂解酶(ICL)对丁二酸产量也有一定影响。好氧培养基中添加80mmol/L乙酸钠,厌氧发酵结束时丁二酸的质量收率可达89.0%,相比对照提高了16.6%。  相似文献   

10.
常压室温等离子体诱变高效利用木糖产丁二酸菌株   总被引:1,自引:0,他引:1  
大肠杆菌Escherichia coli AFP111是E. coli NZN111 (△pflAB△ldhA) 的ptsG自发突变株,其转化1 mol的木糖合成丁二酸的过程中净产生1.67 mol ATP,但是转化1 mol的木糖合成丁二酸的过程中实际需要2.67 mol ATP,因此在厌氧条件下,ATP的供给不足导致E. coli AFP111不能代谢木糖。采用常压室温等离子体射流诱变产丁二酸大肠杆菌菌株,在厌氧条件下,利用以木糖为碳源的M9培养基,筛选得到一株可以代谢木糖并积累丁二酸的突变株DC111。该突变菌株在发酵培养基中,72 h内可以消耗10.52 g/L木糖产6.46 g/L的丁二酸,丁二酸的得率达到了0.78 mol/mol。而且突变株中伴有ATP产生的磷酸烯醇式丙酮酸羧激酶 (PCK) 途径得到加强,PCK的比酶活相对于出发菌株提高了19.33倍,使得其在厌氧条件下能够有足够的ATP供给来代谢木糖发酵产丁二酸。  相似文献   

11.
Liang LY  Liu RM  Ma JF  Chen KQ  Jiang M  Wei P 《Biotechnology letters》2011,33(12):2439-2444
Escherichia coli NZN111 is a double mutant with inactivated lactate dehydrogenase and pyruvate formate-lyase. It cannot utilize glucose anaerobically because of its unusually high intracellular NADH/NAD(+) ratio. We have now constructed a recombinant strain, E. coli NZN111/pTrc99a-mdh, which, during anaerobic fermentation, produced 4.3 g succinic acid l(-1) from 13.5 g glucose l(-1). The NADH/NAD(+) ratio decreased from 0.64 to 0.26. Furthermore, dual-phase fermentation (aerobic growth followed by anaerobic phase) resulted in enhanced succinic acid production and reduced byproduct formation. The yield of succinic acid from glucose during the anaerobic phase was 0.72 g g(-1), and the productivity was 1.01 g l(-1) h(-1).  相似文献   

12.
Succinic acid is not the dominant fermentation product from glucose in wild-type Escherichia coli W1485. To reduce byproduct formation and increase succinic acid accumulation, pyruvate formate-lyase and lactate dehydrogenase, encoded by pflB and ldhA genes, were inactivated. However, E. coli NZN111, the ldhA and pflB deletion strain, could not utilize glucose anaerobically due to the block of NAD(+) regeneration. To restore glucose utilization, overexpression of nicotinic acid phosphoribosyltransferase, a rate limiting enzyme of NAD(H) synthesis encoded by the pncB gene, resulted in a significant increase in cell mass and succinic acid production. Furthermore, the results indicated a significant increase in NAD(H) pool size, and decrease in the NADH/NAD(+) ratio from 0.64 to 0.13, in particular, the concentration of NAD(+) increased 6.2-fold during anaerobic fermentation. In other words, the supply of enough NAD(+) for NADH oxidation by regulation of NAD(H) salvage synthesis mechanism could improve the cell growth and glucose utilization anaerobically. In addition, the low NADH/NAD(+) ratio also change the metabolite distribution during the dual-phase fermentation. As a result, there was a significant increase in succinic acid production, and it is provided further evidence that regulation of NAD(H) pool and NADH/NAD(+) ratio was very important for succinic acid production.  相似文献   

13.
A pfl ldhA double mutant Escherichia coli strain NZN111 was used to produce succinic acid by overexpressing the E. coli malic enzyme. Escherichia coli strain NZN111 harboring pTrcML produced 6 and 8 g/L of succinic acid from 20 g/L of glucose in flask culture at 37 degrees C and 30 degrees C, respectively. When NZN111(pTrcML) was cultured at 30 degrees C with intermittent glucose feeding the final succinic acid concentration obtained was 9.5 g/L and the ratio of succinic acid to acetic acid was 13:1. This system could not be analyzed by conventional metabolic flux analysis techniques, since some pyruvate and succinic acid were accumulated intracellularly. Therefore, a new flux analysis method was proposed by introducing intracellular pyruvate and succinic acid pools. By this new method the concentrations of intracellular metabolites were successfully predicted and the differences between the measured and calculated reaction rates could be considerably reduced.  相似文献   

14.
Apfl ldhA double mutantEscherichia coli strain NZN111 was used to produce succinic acid by overexpressing theE. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, thefumB gene encoding the anaerobic fumarase ofE. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducibletrc promoter. From the batch culture of recombinantE. coli NZN111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号