共查询到20条相似文献,搜索用时 9 毫秒
1.
Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP) as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP) accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis. 相似文献
2.
Claire Marionnet Cécile Pierrard Fran?ois Lejeune Juliette Sok Marie Thomas Fran?oise Bernerd 《PloS one》2010,5(8)
Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV) spectrum referred as “daily UV radiation” (DUVR) with a higher UVA (320–400 nm) to UVB (280–320 nm) irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April) on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure. 相似文献
3.
4.
5.
《Autophagy》2013,9(5):433-441
Studies on human and animal models of retinal dystrophy have suggested that apoptosis may be the common pathway of photoreceptor cell death. Autophagy, the major cellular degradation process in animal cells, is important in normal development and tissue remodeling, as well as under pathological conditions. Previously we provided evidence that genes, whose products are involved in apoptosis and autophagy, may be co-expressed in photoreceptors undergoing degeneration. Here, we investigated autophagy in oxidative stress-mediated cell death in photoreceptors, analyzing the light-damage mouse model and 661W photoreceptor cells challenged with H2O2. In the in vivo model, we demonstrated a time-dependent increase in the number of TUNEL-positive cells, concomitant with the formation of autophagosomes. In vitro, oxidative stress increased mRNA levels of apoptotic and autophagic marker genes. H2O2 treatment resulted in the accumulation of TUNEL-positive cells, the majority of which contain autophagosomes. To determine whether autophagy and apoptosis might precede each other or co-occur, we performed inhibitor studies. The autophagy inhibitor 3-methyladenine (3-MA), silencing RNA (siRNA) against two genes whose products are required for autophagy (autophagy-related (ATG) gene 5 and beclin 1), as well as the pan-caspase-3 inhibitor, zVAD-fmk, were both found to partially block cell death. Blocking autophagy also significantly decreased caspase-3 activity, whereas blocking apoptosis increased the formation of autophagosomes. The survival effects of 3-MA and zVAD-fmk were not additive; rather treatment with both inhibitors lead to increased cell death by necrosis. In summary, the study first suggests that autophagy participates in photoreceptor cell death possibly by initiating apoptosis. Second, it confirms that cells that normally die by apoptosis will execute cell death by necrosis if the normal pathway is blocked. And third, these results argue that the up-stream regulators of autophagy need to be identified as potential therapeutic targets in photoreceptor degeneration. 相似文献
6.
7.
Objectives
The aims of the present study were to determine oxidative stress and to explore possible reasons of reactive oxygen species (ROS) increase in human lens epithelial (HLE) B3 cells exposed to low intensity 1.8 GHz radiofrequency fields (RF).Methods
The HLE B3 cells were divided into RF exposure and RF sham-exposure groups. The RF exposure intensity was at specific absorption rate (SAR) of 2, 3, or 4 W/kg. The ROS levels were measured by a fluorescent probe 2′7′-dichlorofluorescin diacetate (DCFH-DA) assay in the HLE B3 cells exposed to 1.8 GHz RF for 0.5, 1, and 1.5 h. Lipid peroxidation and cellular viability were detected by an MDA test and Cell Counting Kit-8 (CCK-8) assays, respectively, in the HLE B3 cells exposed to 1.8 GHz RF for 6, 12, and 24 h, respectively. The mRNA expression of SOD1, SOD2, CAT, and GPx1 genes and the expression of SOD1, SOD2, CAT, and GPx1 proteins was measured by qRT-PCR and Western blot assays in the HLE B3 cells exposed to 1.8 GHz RF for 1 h.Results
The ROS and MDA levels significantly increased (P<0.05) in the RF exposure group and that the cellular viability, mRNA expression of four genes, and expression of four proteins significantly decreased (P<0.05) compared with the RF sham-exposure group.Conclusions
Oxidative stress is present in HLE B3 cells exposed to 1.8 GHz low-intensity RF and that the increased production of ROS may be related to down-regulation of four antioxidant enzyme genes induced by RF exposure. 相似文献8.
We investigated the relationship between oxidative stress and osteoblasts viability in osteoblasts exposed to various concentrations of fluoride in this study. Primary calvarial osteoblasts from neonatal Kunming mice were cultured and subcultured to the third generation. Osteoblasts were incubated with sodium fluoride (0, 0.5, 1, 2, 4, 8, 12, and 20 mgF(-)/L) for 24, 48, and 72 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis showed cell viability significantly increased after osteoblasts exposed to low concentrations of fluoride (0.5 to approximately 2 mgF(-)/L) for 24 to approximately 72 h. Oxidative stress analysis showed that low concentration of fluoride excited lipid peroxidation in osteoblasts and increased activity of antioxidant enzymes in varying degrees. We demonstrated that changes of osteoblasts viability of the low-dose fluoride groups are different from those of high-dose fluoride groups; however, both low and high doses of fluoride caused active state of oxidative stress in osteoblasts, which suggesting that oxidative stress may be excited by the active osteoblasts viability induced by a low dose of fluoride. 相似文献
9.
Agar Guleray Taspinar Mahmut Sinan Yildirim Ertan Aydin Murat Yuce Merve 《Journal of Plant Growth Regulation》2020,39(2):897-904
Journal of Plant Growth Regulation - Heavy metal pollution, which is one of the most important environmental problems, has a significant effect on plant growth and development. Plants influence all... 相似文献
10.
Michael S. Madejczyk Christine E. Baer William E. Dennis Valerie C. Minarchick Stephen S. Leonard David A. Jackson Jonathan D. Stallings John A. Lewis 《PloS one》2015,10(5)
U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers. 相似文献
11.
12.
应激诱导的细胞早衰与复制性细胞衰老有相似的细胞表型,但其机制不尽相同.分析二者的衰老相关基因表达特点对了解应激因素诱导细胞衰老的机制有重要意义. 本文对过氧化氢诱导的HeLa细胞早衰过程中的关键衰老相关基因及其转录后调控因子的表达做了分析.结果发现,在复制性衰老过程中明显降低的cyclin A、cyclin B1、c-fos及HuR,在温和过氧化氢诱导的细胞早衰过程中并无明显改变;在氧化应激诱导的细胞早衰过程中,p21与p16表达升高,AUF1则降低,与复制性衰老过程一致;p21 mRNA半衰期在复制性衰老过程中无明显变化,但在氧化应激诱导的细胞早衰过程中则显著延长.上述结果提示,尽管氧化应激诱导的细胞早衰与复制性衰老存在相似基因表达变化,调控机制则不尽相同. 相似文献
13.
Mustafa Emre Salih Cetiner Sevil Zencir Isa Unlukurt Ibrahim Kahraman Zeki Topcu 《Cell biochemistry and biophysics》2011,59(2):71-77
We investigated the effect of extremely low-frequency electromagnetic field (ELF-EMF) with pulse trains exposure on lipid peroxidation, and, hence, oxidative stress in the rat liver tissue. The parameters that we measured were the levels of plasma alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase as well as plasma albumin, bilirubin, and total protein levels in 30 adult male Wistar rats exposed to ELF. We also determined the percentage of apoptotic and necrotic cells of the kidney extracts from the animals by flow cytometry method. Apoptotic cell death was further characterized by monitoring DNA degradation using gel electrophoresis. The results showed an increase in the levels of oxidative stress indicators, and the flow cytometric data suggested a possible relationship between the exposure to magnetic field and the cell death. We showed significantly lower necrotic cell percentages in experimental animals compared to either unexposed or sham control groups. However, DNA ladder analyses did not differentiate between the groups. Our results were discussed in relation to the response of biological systems to EMF. 相似文献
14.
Rodrigo A. Silva Marcelly V. Palladino Renan P. Cavalheiro Daisy Machado Bread L. G. Cruz Edgar J. Paredes-Gamero Maria C. C. Gomes-Marcondes Willian F. Zambuzzi Luciana Vasques Helena B. Nader Ana Carolina S. Souza Giselle Z. Justo 《PloS one》2015,10(3)
Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death. 相似文献
15.
Maria Marchetti Lionel Resnick Edna Gamliel Shailaja Kesaraju Herbert Weissbach David Binninger 《PloS one》2009,4(6)
Background
Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID) that affects prostaglandin production by inhibiting cyclooxygenases (COX) 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.Principal Findings
Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP) or hydrogen peroxide. This effect does not involve cyclooxygenase (COX) inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS) within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells.Significance
These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value. 相似文献16.
水稻幼苗在外源·OH和1O2氧化胁迫下,体内脯氨酸明显积累,而和H2O2处理对稻苗体内脯氨酸含量无影响。强光亦能诱导稻苗体内脯氨酸积累。脯氨酸预处理则显著抑制·OH、1O2及强光所诱导的稻苗膜脂过氧化作用。在活性氧的产生/检测系统中,脯氨酸对·OH和1O2所引发反应有明显的竞争效应,但对和H2O2的作用没有形响。这些都表明,氧化胁迫下稻苗体内积累的脯氨酸具有抗氧化作用;脯氨酸对活性氧的清除有一定的专一性,即只对·OH和1O2有明显的清除活性。 相似文献
17.
18.
19.
20.
Eren I Naziroğlu M Demirdaş A Celik O Uğuz AC Altunbaşak A Ozmen I Uz E 《Neurochemical research》2007,32(3):497-505
Venlafaxine is an approved antidepressant that is an inhibitor of both serotonin and norepinephrine transporters. Medical
treatment with oral venlafaxine can be beneficial to depression due to reducing free radical production in the brain and medulla
of depression- induced rats because oxidative stress may a play role in some depression. We investigated the effect of venlafaxine
administration and experimental depression on lipid peroxidation and antioxidant levels in cortex brain, medulla and erythrocytes
of rats. Thirty male wistar rats were used and were randomly divided into three groups. Venlafaxine (20 mg/kg) was orally
supplemented to depression-induced rats constituting the first group for four week. Second group was depression-induced group
although third group was used as control. Depressions in the first and second groups were induced on day zero of the study
by chronic mild stress. Brain, medulla and erythrocytes samples were taken from all animals on day 28. Depression resulted
in significant decrease in the glutathione peroxidase (GSH-Px) activity and vitamin C concentrations of cortex brain, glutathione
(GSH) value of medulla although their levels were increased by venlafaxine administration to the animals of depression group.
The lipid peroxidation levels in the three tissues and nitric oxide value in cortex brain elevated although their levels were
decreased by venlafaxine administration. There were no significant changes in cortex brain vitamin A, erythrocytes vitamin
C, GSH-Px and GSH, medulla vitamin A, GSH and GSH-Px values. In conclusion, cortex brain within the three tissues was most
affected by oxidative stress although there was the beneficial effect of venlafaxine in the brain of depression-induced rats
on investigated antioxidant defenses in the rat model. The treatment of depression by venlafaxine may also play a role in
preventing oxidative stress.
Abstract of the paper was submitted in 1st Ion Channels and Oxidative Stress Congress, 14–16 September 2006, Isparta, Turkey. 相似文献