首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory viral infections have been shown to trigger exacerbations of asthma; however, the mechanism by which viral Th1-type inflammation exacerbates an allergic Th2-type disease remains unclear. We have previously shown that although adoptively transferred Th2 cells are inefficiently recruited to the lung in response to Ag, cotransfer of Th1 cells can increase accumulation of Th2 cells. In this study, we show that respiratory viral infection increases recruitment of resting Th2 cells specific for OVA even in the absence of OVA challenge. These findings suggest that the mechanism by which Th1-type inflammation enhances allergy is via an effect on recruitment. To study the role of the antigenic specificity of Th1 cells in the enhancement of Th2 cell recruitment and to determine whether virus-induced recruitment of OVA-specific Th2 cells may involve Th1 cells specific to a different Ag, we tested whether hen egg lysozyme-specific Th1 cells could synergize with OVA-specific Th2 cells. Challenge of mice that had received adoptively transferred Th1 cells plus Th2 cells induced the expression of inflammatory chemokines in the lung and increased both recruitment and activation of Th2 cells, leading to eosinophil recruitment, even in the absence of challenge with the Th2 Ag. Interestingly, as IL-5 supports eosinophilia, culture of resting Th2 cells with fresh APC induced production of IL-5 in the absence of specific Ag. Thus, Ag-specific activation of Th1 cells enhances the recruitment potential of the lung leading to recruitment and activation of Th2 cells. This implies that circulating Th2 cells in allergic individuals could enter the lungs in response to infection or inflammation and become activated to trigger allergy.  相似文献   

2.
Brain abscesses arise following parenchymal infection with pyogenic bacteria and are typified by inflammation and edema, which frequently results in a multitude of long-term health problems. The impact of adaptive immunity in shaping continued innate responses during late-stage brain abscess formation is not known but is important, because robust innate immunity is required for effective bacterial clearance. To address this issue, brain abscesses were induced in TCR αβ knockout (KO) mice, because CD4(+) and NKT cells represented the most numerous T cell infiltrates. TCR αβ KO mice exhibited impaired bacterial clearance during later stages of infection, which was associated with alterations in neutrophil and macrophage recruitment, as well as perturbations in cytokine/chemokine expression. Adoptive transfer of either Th1 or Th17 cells into TCR αβ KO mice restored bacterial burdens and innate immune cell infiltrates to levels detected in wild-type animals. Interestingly, adoptively transferred Th17 cells demonstrated plasticity within the CNS compartment and induced distinct cytokine secretion profiles in abscess-associated microglia and macrophages compared with Th1 transfer. Collectively, these studies identified an amplification loop for Th1 and Th17 cells in shaping established innate responses during CNS infection to maximize bacterial clearance and differentially regulate microglial and macrophage secretory profiles.  相似文献   

3.
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, has long been thought to be mediated by Th1 CD4(+) T cells. Using adoptive transfer techniques, transfer of CNS specific Th1 T cells was sufficient to induce EAE in naive mice. However, recent studies found a vital role for IL-17 in induction of EAE. These studies suggested that a fraction of IL-17-producing T cells that contaminate Th1 polarized cell lines are largely responsible for initiation of EAE. In this study, we tracked the appearance and cytokine production capacity of adoptively transferred cells within the CNS of mice throughout EAE disease. IL-17-producing, adoptively transferred cells were not enriched over the low percentages present in vitro. Thus, there was no selective recruitment and/or preferential proliferation of adoptively transferred IL-17-producing cells during the induction of EAE. Instead a large number of CNS infiltrating host T cells in mice with EAE were capable of producing IL-17 following ex vivo stimulation. The IL-17-producing T cells contained both alphabeta and gammadelta TCR(+) T cells with a CD4(+)CD8(-) or CD4(-)CD8(-) phenotype. These cells concentrated within the CNS within 3 days of adoptive transfer, and appeared to play a role in EAE induction as adoptive transfer of Th1 lines derived from wild-type mice into IL-17-deficient mice induced reduced EAE clinical outcomes. This study demonstrates that an encephalitogenic Th1 cell line induces recruitment of host IL-17-producing T cells to the CNS during the initiation of EAE and that these cells contribute to the incidence and severity of disease.  相似文献   

4.
The ability of committed Th1 and Th2 cells to function in altered cytokine environments is a central issue in autoimmune and immune-mediated diseases. Therefore, it is of interest to study the ability of Th1 or Th2 cells to expand and produce cytokine reciprocal environments in vivo. Using STAT4- and STAT6-deficient mice, we studied the expansion and cytokine production of Ag-specific Th1 or Th2 cells after transfer into Th1, Th2, or wild-type recipients. Our data show that these Th1 or Th2 cells proliferated and clonally expanded normally, regardless of the in vivo cytokine environment. These data have implications for the treatment of immune-mediated diseases by immunomodulatory agents that alter the cytokine milieu in vivo.  相似文献   

5.
In these studies, we examined the effects of OX40 ligand (OX40L) deficiency on the development of Th2 cells during the Th2 immune response to the intestinal nematode parasite Heligmosomoides polygyrus. Elevations in IL-4 production and total and Ag-specific serum IgE levels were partially inhibited during both the primary and memory immune responses to H. polygyrus in OX40L(-/-) mice. The host-protective memory response was compromised in OX40L(-/-) mice, as decreased worm expulsion and increased egg production were observed compared with H. polygyrus-inoculated OX40L(+/+) mice. To further examine the nature of the IL-4 defect during priming, adoptively transferred DO11.10 T cells were analyzed in the context of the H. polygyrus response. Although Ag-specific T cell IL-4 production was reduced in the OX40L(-/-) mice following immunization with OVA peptide plus H. polygyrus, Ag-specific T cell expansion, cell cycle progression, CXCR5 expression, and migration were comparable between OX40L(+/+) and OX40L(-/-) mice inoculated with OVA and H. polygyrus. These studies suggest an important role for OX40/OX40L interactions in specifically promoting IL-4 production, as well as associated IgE elevations, in Th2 responses to H. polygyrus. However, OX40L interactions were not required for serum IgG1 elevations, increases in germinal center formation, and Ag-specific Th2 cell expansion and migration to the B cell zone.  相似文献   

6.
The role of Th17 lymphocytes in immunopathogenic processes has been well established, but little is known about their basic cell features. In this study, we compared polarized Th1 and Th17 for key biological activities related to pathogenicity and trafficking. Th1 and Th17 lineages were derived from TCR-transgenic CD4 murine cells specific against hen egg lysozyme. When adoptively transferred into mice expressing hen egg lysozyme in their eyes, both Th1 and Th17 induced ocular inflammation but with slight differences in histological pathology. PCR analysis revealed selective expression of IFN-gamma or IL-17 in eyes of Th1 or Th17 recipients, respectively. Additionally, Th1 and Th17 were found to differ in three other key activities: 1) Th17 cells were inferior to Th1 cells in their capacity to trigger massive lymphoid expansion and splenomegaly; 2) the proportion of Th1 cells among infiltrating cells in inflamed recipient eyes declined rapidly, becoming a minority by day 7, whereas Th17 cells remained in the majority throughout this period; and 3) remarkable differences were noted between Th1 and Th17 cells in their expression of certain surface markers. In particular, reactivated Th1 expressed higher levels of CD49d and alpha(4)beta(7) (mucosal homing) in vitro and higher levels of CXCR3 (Th1 trafficking) in vivo. Reactivated Th17, however, expressed higher levels of alpha(E)beta(7) (epithelial tissue homing) and CD38 (activation, maturation and trafficking) in vitro, but in vivo Th17 expressed higher levels of alpha(4)beta(7) and CCR6 (lymphocyte trafficking). These data reveal that Th1 and Th17 cells differ in several key biological activities influencing migration and pathogenic behavior during inflammatory disease.  相似文献   

7.
The control of lymphocyte recruitment to the site of inflammation is an important component determining the pathogenicity of an autoimmune response. Progression from insulitis to diabetes in the nonobese diabetic mouse is typically associated with Th1 pancreatic inflammation, whereas Th2 inflammation can seemingly be controlled indefinitely. We show that a Th1 (IFN-gamma) pancreatic environment greatly accelerates the recruitment of adoptively transferred islet-specific CD4 T cells to the islets and also accelerates the onset of diabetes. The increased number of islet-reactive T cells in the pancreas does not result from increased proliferation or a decreased rate of apoptosis; instead, it appears to be caused by a greatly facilitated rate of entry to the pancreas. In contrast, a Th2 (IL-4) pancreatic environment does act to enhance Ag-specific proliferation and decrease the rate of apoptosis in islet-specific CD4 T cells. Nonpathogenic/regulatory cells are not preferentially expanded by the presence of IL-4. Increased recruitment to the islets was also observed in the presence of IL-4, but to a lesser extent than in the presence of IFN-gamma, and this lesser increase in the rate of recruitment did not accelerate diabetes onset within the time period examined. Therefore, the production of Th1 cytokines by initial islet-infiltrating cells may cause a greater increase than Th2 cytokines in the rate of recruitment of activated T cells. This difference in rate of recruitment may be critical in determining whether the initial infiltrate proceeds to diabetes or whether a steady state insulitis develops that can be maintained.  相似文献   

8.
CD4+ T cells of the Th1 type play a central role in acute rejection of solid tissue grafts, including orthotopic corneal allografts. Th1 cells, which mediate delayed hypersensitivity, are the polar opposites of CD4+ Th2 cells, and the latter cells cross-regulate Th1 cells through the unique pattern of cytokines they secrete. As such, Th2 cells may have a useful role to play in preventing rejection of corneal allografts. To test this possibility, the immune systems of adult mice were biased toward Th2 responses by immunization with keyhole limpet hemocyanin plus IFA. When immunized subsequently with either OVA or allogeneic corneal tissue, these mice acquired Ag-specific primed T cells of the Th2 type. More important, allogeneic corneas grafted into neovascularized eyes of Th2-biased mice experienced significantly enhanced survival. To demonstrate that enhanced survival was promoted by donor-specific Th2 cells, lymphoid cells from keyhole limpet hemocyanin-immune mice bearing healthy corneal allografts suppressed orthotopic corneal allograft rejection when adoptively transferred into naive, syngeneic recipients. We conclude that acceptance of corneal allografts in neovascularized mouse eyes can be significantly enhanced by biasing the recipient immune system toward Th2 responses.  相似文献   

9.
The chemokine, stromal-derived factor-1/CXCL12, is expressed by normal and neoplastic tissues and is involved in tumor growth, metastasis, and modulation of tumor immunity. T cell-mediated tumor immunity depends on the migration and colocalization of CTL with tumor cells, a process regulated by chemokines and adhesion molecules. It has been demonstrated that T cells are repelled by high concentrations of the chemokine CXCL12 via a concentration-dependent and CXCR4 receptor-mediated mechanism, termed chemorepulsion or fugetaxis. We proposed that repulsion of tumor Ag-specific T cells from a tumor expressing high levels of CXCL12 allows the tumor to evade immune control. Murine B16/OVA melanoma cells (H2b) were engineered to constitutively express CXCL12. Immunization of C57BL/6 mice with B16/OVA cells lead to destruction of B16/OVA tumors expressing no or low levels of CXCL12 but not tumors expressing high levels of the chemokine. Early recruitment of adoptively transferred OVA-specific CTL into B16/OVA tumors expressing high levels of CXCL12 was significantly reduced in comparison to B16/OVA tumors, and this reduction was reversed when tumor-specific CTLs were pretreated with the specific CXCR4 antagonist, AMD3100. Memory OVA-specific CD8+ T cells demonstrated antitumor activity against B16/OVA tumors but not B16/OVA.CXCL12-high tumors. Expression of high levels of CXCL12 by B16/OVA cells significantly reduced CTL colocalization with and killing of target cells in vitro in a CXCR4-dependent manner. The repulsion of tumor Ag-specific T cells away from melanomas expressing CXCL12 confirms the chemorepellent activity of high concentrations of CXCL12 and may represent a novel mechanism by which certain tumors evade the immune system.  相似文献   

10.
Respiratory syncytial virus (RSV) is a major viral pathogen of infants that also reinfects adults. During RSV infection, inflammatory host cell recruitment to the lung plays a central role in determining disease outcome. Chemokines mediate cell recruitment to sites of inflammation and are influenced by, and influence, the production of cytokines. We therefore compared chemokine production in a mouse model of immunopathogenic RSV infection in which either Th1 or Th2 immunopathology is induced by prior sensitization to individual RSV proteins. Chemokine expression profiles were profoundly affected by the nature of the pulmonary immunopathology: "Th2" immunopathology in BALB/c mice was associated with increased and prolonged expression of CCL2 (MCP-1), CXCL10 (IP-10), and CCL11 (eotaxin) starting within 24 h of challenge. C57BL/6 mice with "Th2" pathology (enabled by a deficiency of CD8+ cells) also showed increased CCL2 production. No differences in chemokine receptor expression were detected. Chemokine blockers may therefore be of use for children with bronchiolitis.  相似文献   

11.
Th1 and Th2 cells mutually antagonize each other's differentiation. Consequently, allergen-specific Th1 cells are believed to be able to suppress the development of Th2 cells and to prevent the development of atopic disorders. To determine whether a pre-existing Ag-specific Th1 response can affect the development of Th2 cells in vivo, we used an immunization model of Ag-pulsed murine dendritic cell (DC) transfer to induce distinct Th responses. When transferred into naive mice, Ag-pulsed CD8alpha(+) DCs induced a Th1 response and the production of IgG2a, whereas CD8alpha(-) DCs primed a Th2 response and the production of IgE. In the presence of a pre-existing Ag-specific Th2 environment due to Ag-pulsed CD8alpha(-) DC transfer, CD8alpha(+) DCs failed to prime Th1 cells. In contrast, CD8alpha(-) DCs could prime a Th2 response in the presence of a pre-existing Ag-specific Th1 environment. Moreover, exogenous IL-4 abolished the Th1-inducing potential of CD8alpha(+) DCs in vitro, but the addition of IFN-gamma did not effectively inhibit the potential of CD8alpha(-) DCs to prime IL-4-producing cells. Thus, Th1 and Th2 cells differ in their potential to inhibit the development of the other. This suggests that the early induction of allergen-specific Th1 cells before allergy sensitization will not prevent the development of atopic disorders.  相似文献   

12.
Infection with Trypanosoma cruzi results in the development of both type 1 and type 2 patterns of cytokine responses during acute and chronic stages of infection. To investigate the role of Th1 and Th2 subsets of CD4(+) T cells in determining the outcome of T. cruzi infection in mice, we have developed T. cruzi clones that express OVA and have used OVA-specific TCR-transgenic T cells to generate OVA-specific Th1 and Th2 cells. BALB/c mice receiving 10(7) OVA-specific Th1 cells and then challenged with OVA-expressing T. cruzi G-OVA.GPI showed significantly lower parasitemia and increased survival in comparison to mice that received no cells. In contrast, recipients of OVA-specific Th2 cells developed higher parasitemias, exhibited higher tissue parasitism and inflammation, and had higher mortality than recipients of Th1 cells after infection with T. cruzi G-OVA.GPI. Mice receiving a mixture of both Th1 and Th2 OVA-specific cells also were not protected from lethal challenge. The protective effect of the OVA-specific Th1 cells was OVA dependent as shown by the fact that transfer of OVA-specific Th1 or Th2 cells failed to alter the course of infection or disease in mice challenged with wild-type T. cruzi. Immunohistochemical analysis of OVA-specific Th1 and Th2 cells at 4, 15, and 30 days postinfection revealed the persistence and expansion of these cells in mice challenged with T. cruzi G-OVA.GPI but not in mice infected with wild-type T. cruzi. We conclude that transfer of Ag-specific Th1 cells but not Th2 cells protect mice from a lethal infection with T. cruzi.  相似文献   

13.
In this study, we investigated the involvement of Th1 cytokines in the expression of cell adhesion molecules (CAM) and recruitment of inflammatory cells to the heart of mice infected with Trypanosoma cruzi. Our results show that endogenously produced IFN-gamma is essential to induce optimal expression of VCAM-1 and ICAM-1 on the cardiac vascular endothelium of infected mice. Furthermore, the influx of inflammatory cells into the cardiac tissue was impaired in Th1 cytokine-deficient infected mice, paralleling the intensity of VCAM-1 and ICAM-1 expression on the vascular endothelium. Consistent with the importance of ICAM-1 in host resistance, ICAM-1 knockout (KO) mice were highly susceptible to T. cruzi infection, as assessed by mortality rate, parasitemia, and heart tissue parasitism. The enhanced parasitism was associated with a decrease in the numbers of CD4(+) and CD8(+) T lymphocytes in the heart tissue of ICAM-1 KO mice. Additionally, ICAM-1 KO mice mounted an unimpaired IFN-gamma response and IFN-gamma-dependent production of reactive nitrogen intermediates and parasite- specific IgG2a. Supporting the participation of ICAM-1 in cell migration during T. cruzi infection, the entrance of adoptively transferred PBL from T. cruzi-infected wild-type C57BL/6 mice into the cardiac tissue of ICAM-1 KO mice was significantly abrogated. Therefore, we favor the hypothesis that ICAM-1 plays a crucial role in T lymphocyte recruitment to the cardiac tissue and host susceptibility during T. cruzi infection.  相似文献   

14.
NK cells have been shown to play a role in the modulation of B cell differentiation and Ab production. Using a novel murine model of NK cell deficiency, we analyzed the in vivo role of NK cells in the regulation of Ag-specific Ab production. After immunization with OVA or keyhole limpet hemocyanin in CFA, NK cell-deficient (NK-T+) mice developed an efficient Th1 response and produced significant levels of IFN-gamma but displayed markedly reduced or absent Ag-specific IgG2a production. There were no differences in the levels of Ag-specific IgG, IgG1, and IgG2b between NK-T+ and NK+T+ mice. Furthermore, NK cell-reconstituted, NK+T+ (tgepsilon26Y) mice produced significant amounts of Ag-specific IgG2a after immunization with OVA. These results indicate that NK cells are involved in the induction of Ag-specific IgG2a production in vivo. Moreover, they also demonstrate that the lack of Ag-specific IgG2a Ab production in NK-T+ mice is not associated with the impaired Th1 response and IFN-gamma production.  相似文献   

15.
Interleukin 4 (IL-4) plays a central role in the orchestration of Type 2 immunity. During T cell activation in the lymph node, IL-4 promotes Th2 differentiation and inhibits Th1 generation. In the inflamed tissue, IL-4 signals promote innate and adaptive Type-2 immune recruitment and effector function, positively amplifying the local Th2 response. In this study, we identify an additional negative regulatory role for IL-4 in limiting the recruitment of Th1 cells to inflamed tissues. To test IL-4 effects on inflammation subsequent to Th2 differentiation, we transiently blocked IL-4 during ongoing dermal inflammation (using anti-IL-4 mAb) and analyzed changes in gene expression. Neutralization of IL-4 led to the upregulation of a number of genes linked to Th1 trafficking, including CXCR3 chemokines, CCL5 and CCR5 and an associated increase in IFNγ, Tbet and TNFα genes. These gene expression changes correlated with increased numbers of IFNγ-producing CD4+ T cells in the inflamed dermis. Moreover, using an adoptive transfer approach to directly test the role of IL-4 in T cell trafficking to the inflamed tissues, we found IL-4 neutralization led to an early increase in Th1 cell recruitment to the inflamed dermis. These data support a model whereby IL-4 dampens Th1-chemokines at the site of inflammation limiting Th1 recruitment. To determine biological significance, we infected mice with Leishmania major, as pathogen clearance is highly dependent on IFNγ-producing CD4+ T cells at the infection site. Short-term IL-4 blockade in established L. major infection led to a significant increase in the number of IFNγ-producing CD4+ T cells in the infected ear dermis, with no change in the draining LN. Increased lymphocyte influx into the infected tissue correlated with a significant decrease in parasite number. Thus, independent of IL-4''s role in the generation of immune effectors, IL-4 attenuates lymphocyte recruitment to the inflamed/infected dermis and limits pathogen clearance.  相似文献   

16.
T cell subset-specific migration to inflammatory sites is tightly regulated and involves interaction of the T cells with the endothelium. Th17 cells often appear at different inflammatory sites than Th1 cells, or both subsets appear at the same sites but at different times. Differences in T cell subset adhesion to endothelium may contribute to subset-specific migratory behavior, but this possibility has not been well studied. We examined the adhesion of mouse Th17 cells to endothelial adhesion molecules and endothelium under flow in vitro and to microvessels in vivo and we characterized their migratory phenotype by flow cytometry and quantitative RT-PCR. More Th17 than Th1 cells interacted with E-selectin. Fewer Th17 than Th1 cells bound to TNF-α-activated E-selectin-deficient endothelial cells, and intravital microscopy studies demonstrated that Th17 cells engage in more rolling interactions with TNF-α-treated microvessels than Th1 cells in wild-type mice but not in E-selectin-deficient mice. Th17 adhesion to ICAM-1 was dependent on integrin activation by CCL20, the ligand for CCR6, which is highly expressed by Th17 cells. In an air pouch model of inflammation, CCL20 triggered recruitment of Th17 but not Th1 cells. These data provide evidence that E-selectin- and ICAM-1-dependent adhesion of Th17 and Th1 cells with endothelium are quantitatively different.  相似文献   

17.
The etiology of asthma, a chronic inflammatory disorder of the airways, remains obscure, although T cells appear to be central disease mediators. Lyn tyrosine kinase has been implicated as both a facilitator and inhibitor of signaling pathways that play a role in allergic inflammation, although its role in asthma is unclear because Lyn is not expressed in T cells. We show in the present study that Lyn-/- mice develop a severe, persistent inflammatory asthma-like syndrome with lung eosinophilia, mast cell hyperdegranulation, intensified bronchospasm, hyper IgE, and Th2-polarizing dendritic cells. Dendritic cells from Lyn-/- mice have a more immature phenotype, exhibit defective inhibitory signaling pathways, produce less IL-12, and can transfer disease when adoptively transferred into wild-type recipients. Our results show that Lyn regulates the intensity and duration of multiple asthmatic traits and indicate that Lyn is an important negative regulator of Th2 immune responses.  相似文献   

18.
19.
Airway eosinophilia in asthma is dependent on cytokines secreted by Th2 cells, including IL-5 and IL-4. In these studies we investigated why the absence of IL-4 led to a reduction in airway, but not lung tissue, eosinophils. Using adoptively transferred, in vitro-generated TCR-transgenic Th2 cells deficient in IL-4, we show that this effect is independent of IL-5 and Th2 cell generation. Airway eosinophilia was no longer inhibited when IL-4(-/-) Th2 cells were transferred into IFN-gammaR(-/-) mice, indicating that IFN-gamma was responsible for reducing airway eosinophils in the absence of IL-4. Intranasal administration of IFN-gamma to mice after IL-4(+/+) Th2 cell transfer also caused a reduction in airway, but not lung parenchymal, eosinophils. These studies show that IL-4 indirectly promotes airway eosinophilia by suppressing the production of IFN-gamma. IFN-gamma reduces airway eosinophils by engaging its receptor on hemopoietic cells, possibly the eosinophil itself. These studies capitalize on the complex counterregulatory effects of Th1 and Th2 cytokines in vivo and clarify how IL-4 influences lung eosinophilia. We define a new regulatory role for IFN-gamma, demonstrating that eosinophilic inflammation is differentially regulated at distinct sites within the respiratory tract.  相似文献   

20.
Leflunomide, an inhibitor of de novo pyrimidine biosynthesis, has recently been introduced as a treatment for rheumatoid arthritis in an attempt to ameliorate inflammation by inhibiting lymphocyte activation. Although the immunosuppressive ability of leflunomide has been well described in several experimental animal models, the precise effects of a limited pyrimidine supply on T cell differentiation and effector functions have not been elucidated. We investigated the impact of restricted pyrimidine biosynthesis on the activation and differentiation of CD4 T cells in vivo and in vitro. Decreased activation of memory CD4 T cells in the presence of leflunomide resulted in impaired generation and outgrowth of Th1 effectors without an alteration of Th2 cell activation. Moreover, priming of naive T cells in the presence of leflunomide promoted Th2 differentiation from uncommitted precursors in vitro and enhanced Th2 effector functions in vivo, as indicated by an increase in Ag-specific Th2 cells and in the Th2-dependent Ag-specific Ig responses (IgG1) in immunized mice. The effects of leflunomide on T cell proliferation and differentiation could be antagonized by exogenous UTP, suggesting that they were related to a profound inhibition of de novo pyrimidine biosynthesis. These results indicate that leflunomide might exert its anti-inflammatory activities in the treatment of autoimmune diseases by preventing the generation of proinflammatory Th1 effectors and promoting Th2 cell differentiation. Moreover, the results further suggest that differentiation of CD4 T cells can be regulated at the level of nucleotide biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号