首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective resolution of human platelet cytosolic phosphoinositide-phospholipase C (PLC) revealed five distinct activity peaks by Q-Sepharose and heparin-Sepharose column chromatographies when assayed using phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2). The results of Western blotting analysis with various antibodies against PLC isozymes showed that peak-Ia (PLC-delta type), peak-Ib (PLC-gamma 1 type), and peak-IIc (PLC-beta type) and two unidentified activity peaks (PLC-IIa and PLC-IIb) were present in human platelet cytosol. A protein with guanosine 5'-3-O-(thio)triphosphate-binding activity was coeluted with the PLC-IIa and was purified to homogeneity. It exhibited 86- and 42-kDa polypeptide bands upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis which were identified as gelsolin and actin by immunostaining, respectively. Large amounts of gelsolin/actin (1:1) complex "gelsolin complex" were detected in the PLC-delta and PLC-gamma 1 fractions. The PLC-gamma 1 and the gelsolin complex were co-immunoprecipitated by the antibody raised against PLC-gamma 1. Furthermore, the partially purified bovine brain PLC-gamma 1 fraction also was found to be associated with the gelsolin complex and the association was released by the addition of 1% sodium cholate. This finding has prompted us to examine effects of the gelsolin complex and the free gelsolin on activities of the above PLC isoforms from platelet cytosol. The gelsolin complex did not affect the PIP2 hydrolyzing activities of all PLC isoforms. In contrast, the purified gelsolin inhibited distinctly PIP2 hydrolyses by PLC-Ia (delta), PLC-Ib (gamma 1), and PLC-IIa (unidentified), whereas the inhibitory effects for PLC-IIb (unidentified) and PLC-IIc (beta) were moderate. The inhibitory effect of gelsolin on PIP2-hydrolysis by PLC-gamma 1 was diminished by a large amount of PIP2 substrate. These results suggested that the inhibition of PLC by gelsolin is due to sequestration of substrate PIP2 by its competitive binding.  相似文献   

2.
A novel bovine spleen phosphoinositide-specific phospholipase C (PLC) has been identified with respect to immunoreactivity with four independent antibodies against each of the PLC isoenzymes, and purified to near homogeneity by sequential column chromatography. Spleen contains three of the isoenzymes: two different gamma-types [gamma 1 and gamma 2, originally named as PLC-gamma [Rhee, Suh, Ryu & Lee (1989) Science 244, 546-550] and PLC-IV [Emori, Homma, Sorimachi, Kawasaki, Nakanishi, Suzuki & Takenawa (1989) J. Biol. Chem. 264, 21885-21890] respectively] and delta-type of the enzyme, but PLC-gamma 1 is separated from the PLC-gamma 2 pool by the first DEAE-cellulose column chromatography. Subsequently, PLC-delta is dissociated on the third heparin-Sepharose column chromatography. The purified enzyme has a molecular mass of 145 kDa on SDS/polyacrylamide-gel electrophoresis and a specific activity of 12.8 mumol/min per mg with phosphatidylinositol 4,5-bisphosphate as substrate. This enzyme activity is dependent on Ca2+ for hydrolysis of all these phosphoinositides. None of the other phospholipids examined could be its substrate at any concentration of Ca2+. The optimal pH of the enzyme is slightly acidic (pH 5.0-6.5).  相似文献   

3.
cDNAs corresponding to a previously uncharacterized phospholipase C were isolated from an HL-60 cell cDNA library. The cDNAs encodes a putative polypeptide of 1181 amino acids with a calculated molecular mass of 133,700 daltons. Comparison of the amino acid sequence of the predicted protein with those of five mammalian phospholipase C isoforms (PLC-beta 1, PLC-gamma 1, PLC-gamma 2, PLC-delta 1, and PLC-delta 2) revealed that the new enzyme is most closely related to PLC-beta 1 with an overall amino acid sequence identity of 48%. Thus, the new phospholipase C was named PLC-beta 2. The least similarity between PLC-beta 1 and PLC-beta 2 is apparent in the carboxyl-terminal 450 amino acids. Both PLC-beta 1 and PLC-beta 2 were purified from extracts of HeLa cells that had been transfected with vaccinia virus containing the corresponding cDNAs. Like other mammalian PLC isoforms, including PLC-beta 1, the catalytic activity of PLC-beta 2 was entirely dependent on Ca2+, and PLC-beta 2 preferred phosphatidyl-inositol 4,5-bisphosphate to phosphatidylinositol as substrate. Recently, the alpha subunit of the pertussis toxin-insensitive G-protein alpha q has been shown to activate PLC-beta 1 but not PLC-gamma 1 and PLC-delta 1. When alpha q purified from bovine brain was reconstituted with PLC-beta 1 or PLC-beta 2, no stimulation of PLC-beta 2 was observed in the presence of either AlF4- or guanosine 5-O-(3-thiotriphosphate) (GTP gamma S), whereas PLC-beta 1 activity was enhanced markedly in the presence of AlF4- and less markedly but significantly in the presence of GTP gamma S. These results suggest that the receptor-dependent stimulation of PLC-beta 1 and that of PLC-beta 2 may require different G-protein alpha subunits. (see also accompanying article (Lee, C. H., Park, D., Wu, D., Rhee, S. G., and Simon, M. I. (1992) J. Biol. Chem. 267, 16044-16047).  相似文献   

4.
Phosphorylation of phospholipase C-gamma by cAMP-dependent protein kinase   总被引:9,自引:0,他引:9  
The mechanism by which cAMP modulates the activity of phosphoinositide-specific phospholipase C (PLC) was studied. Elevation of cAMP inhibited both basal and norepinephrine-stimulated phosphoinositide breakdown in C6Bu1 cells which contain at least three PLC isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of C6Bu1 cells with cAMP-elevating agents (cholera toxin, isobutylmethylxanthine, forskolin, and 8-bromo-cAMP) increased serine phosphate in PLC-gamma, but the phosphate contents in PLC-beta and PLC-delta were not changed. In addition, cAMP-dependent protein kinase selectively phosphorylated purified PLC-gamma among the three isozymes and added a single phosphate at serine. The serine phosphorylation, nevertheless, did not affect the activity of PLC-gamma in vitro. We propose, therefore, that the phosphorylation of PLC-gamma by cAMP-dependent protein kinase alters its interaction with putative modulatory proteins and leads to its inhibition.  相似文献   

5.
Ca2+ dependent polyphosphoinositide phospholipase C (PLC) activity in cardiac sarcolemma hydrolyzed both endogenous and exogenous phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) with an associated increase in inositol bisphosphate (IP2). Dialyzed cytosol and certain fractions of cytosol isolated by anion exchange or gel filtration chromatography activated sarcolemmal PLC activity by approx. 100%. The PLC activator eluted with an apparent molecular weight of 160 Kdal on a Sephacryl 300 column and was destroyed by heat or trypsin treatment. Exogenous 3H-PIP2 was not hydrolyzed by cytosolic fractions containing sarcolemmal PLC activator. These studies demonstrate that the polyphosphoinositide PLC in cardiac sarcolemma is regulated by a cytosolic protein.  相似文献   

6.
Bovine liver cytosol contains a phosphoinositide phospholipase C (PLCcyt) that is activated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S)-activated G-proteins from liver plasma membranes. Heparin-Sepharose chromatography indicated that PLCcyt was immunologically distinct from PLC-beta 1, PLC-gamma 1, or PLC-delta 1 from brain. Initial purification of the GTP gamma S-activated G-proteins that stimulated PLCcyt indicated that the beta gamma complex was responsible. G-proteins were subsequently extracted from liver membranes as heterotrimers and purified in the presence of AlCl3, MgCl2, and NaF to allow reversible activation. Immunoblot analysis with an antiserum selective for the beta subunit showed that the stimulatory activity corresponded with the presence of this protein at every chromatographic step. When liver beta gamma complex was purified and separated from all detectable alpha subunits, as shown by immunoblotting and silver staining, it strongly stimulated PLCcyt after removal of the activating ligand [AlF4]- by gel filtration. beta gamma prepared from brain was approximately equipotent with that from liver. beta gamma was half-maximally effective at 33 nM and produced a maximal 50-fold activation of the PLC. Under identical conditions, beta gamma had no effect on brain PLC-gamma 1 or PLC-delta 1 and produced a 2-fold stimulation of PLC-beta 1 activity. Addition of purified GDP-bound alpha o, which had no effect by itself, completely reversed the beta gamma activation of PLCcyt, confirming that beta gamma was the active species. These data provide evidence for a novel mechanism by which beta gamma subunits of pertussis toxin-sensitive or -insensitive G-proteins activate phospholipase C.  相似文献   

7.
Feedback regulation of phospholipase C-beta by protein kinase C   总被引:9,自引:0,他引:9  
Treatment of a variety of cells and tissues with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C (PKC) results in the inhibition of receptor-coupled inositol phospholipid-specific phospholipase C (PLC) activity. To determine whether or not the targets of TPA-activated PKC include one or more isozymes of PLC, studies were carried out with PC12, C6Bu1, and NIH 3T3 cells, which contain at least three PLC isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of the cells with TPA stimulated the phosphorylation of serine residues in PLC-beta, but the phosphorylation state of PLC-gamma and PLC-delta was not changed significantly. Phosphorylation of bovine brain PLC-beta by PKC in vitro resulted in a stoichiometric incorporation of phosphate at serine 887, without any concomitant effect on PLC-beta activity. We propose, therefore, that rather than having a direct effect on enzyme activity, the phosphorylation of PLC-beta by PKC may alter its interaction with a putative guanine nucleotide-binding regulatory protein and thereby prevent its activation.  相似文献   

8.
Phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis catalyzes the cleavage of the phosphorus-oxygen bond in phosphatidylinositol. The focus of this work is to dissect the roles of the carboxylate side chain of Asp(274) in the Asp(274)-His(32) dyad, where a short strong hydrogen bond (SSHB) was shown to exist based on NMR criteria. A regular hydrogen bond (HB) was observed in D274N, and no low field proton resonance was detected for D274E and D274A. Comparison of the activity of wild type, D274N, and D274A suggested that the regular HB contributes significantly (approximately 4 kcal/mol) to catalysis, whereas the SSHB contributes only an additional 2 kcal/mol. The mutant D274E displays high activity similar to wild type, suggesting that the negative charge is sufficient for the catalytic role of Asp(274). To further support this interpretation and rule out possible contribution of regular HB or SSHB in D274E, we showed that the activity of D274G can be rescued by exogenous chloride ions to a level comparable with that of D274E. Comparison between different anions suggested that the ability of an anion to rescue the activity is due to the size and the charge of the anion not the property as a HB acceptor. In conclusion, a major fraction of the functional role of Asp(274) in the Asp(274)-His(32) dyad can be attributed to a negative charge (as in D274E and D274G-Cl(-)), and the SSHB in the wild type enzyme provides minimal contribution to catalysis. These results represent novel insight for an Asp-His catalytic dyad and for the mechanism of phosphatidylinositol-specific phospholipase C.  相似文献   

9.
Crljen V  Visnjić D  Banfić H 《FEBS letters》2004,571(1-3):35-42
Phospholipase C (PLC) was purified from the membrane-depleted rat liver nuclei. About 60% of the total PLC-activity corresponded to beta1b isoform, 30% to PLC-gamma1 and less than 10% to PLC-delta1. PLC-beta1b and -gamma1 were found in the nuclear matrix, while PLC-delta1 was detected in the chromatin. Two peaks of an increase in the total PLC-activity were detected occurring at 6 and 20 h after partial hepatectomy. An early increase in PLC-beta1b activity in the nuclear matrix was associated with serine phosphorylation of the enzyme, while the later increase paralleled the increase in the amount of protein. The increase in the PLC-gamma1 activity measured at 6 and 20 h after partial hepatectomy was associated with tyrosine phosphorylation of the enzyme. The activity of PLC-delta1 and the amount of the protein found in the chromatin was increased only at 20 h after partial hepatectomy.  相似文献   

10.
Second messengers generated from membrane lipids play a critical role in signaling and control diverse cellular processes. Despite being one of the most evolutionarily conserved of all the phosphoinositide-specific phospholipase C (PLC) isoforms, a family of enzymes responsible for hydrolysis of the membrane lipid phosphatidylinositol bisphosphate, the mechanism of PLC-delta1 activation is still poorly understood. Here we report a novel regulatory mechanism for PLC-delta1 activation that involves direct interaction of the small GTPase Ral and the universal calcium-signaling molecule calmodulin (CaM) with PLC-delta1. In addition, we have identified a novel IQ type CaM binding motif within the catalytic region of PLC-delta1 that is not found in other PLC isoforms. Binding of CaM at the IQ motif inhibits PLC-delta1 activity, while addition of Ral reverses the inhibition. The overexpression of various Ral mutants in cells potentiates PLC-delta1 activity. Thus, the Ral-CaM complex defines a multifaceted regulatory mechanism for PLC-delta1 activation.  相似文献   

11.
The phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis can be activated by nonsubstrate interfaces such as phosphatidylcholine micelles or bilayers. This activation corresponds with partial insertion into the interface of two tryptophans, Trp-47 in helix B and Trp-242 in a loop, in the rim of the alphabeta-barrel. Both W47A and W242A have much weaker binding to interfaces and considerably lower kinetic interfacial activation. Tryptophan rescue mutagenesis, reinsertion of a tryptophan at a different place in helix B in the W47A mutant or in the loop (residues 232-244) of the W242A mutant, has been used to determine the importance and orientation of a tryptophan in these two structural features. Phosphotransferase and phosphodiesterase assays, and binding to phosphatidylcholine vesicles were used to assess both orientation and position of tryptophans needed for interfacial activity. Of the helix B double mutants, only one mutant, I43W/W47A, has tryptophan in the same orientation as Trp-47. I43W/W47A shows recovery of phosphatidylinositol-specific phospholipase C (PC) activation of d-myo-inositol 1,2-cyclic phosphate hydrolysis. However, the specific activity toward phosphatidylinositol is still lower than wild type enzyme and high activity with phosphatidylinositol solubilized in 30% isopropyl alcohol (a hallmark of the native enzyme) is lost. Reinserting a tryptophan at several positions in the loop composed of residues 232-244 partially recovers PC activation and affinity of the enzyme for lipid interfaces as well as activation by isopropyl alcohol. G238W/W242A shows an enhanced activation and affinity for PC interfaces above that of wild type. These results provide constraints on how this bacterial phosphatidylinositol-specific phospholipase C binds to activating PC interfaces.  相似文献   

12.
We show that epigallocatechin-3 gallate (EGCG), a major component of green tea, stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-gamma1 mutant, which is dependent on intracellular or extracellular Ca(2+), with the possible involvement of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). EGCG induced translocation of PLC-gamma1 from the cytosol to the membrane and PLC-gamma1 interaction with PLD1. EGCG regulates the activity of PLD by modulating the redox state of the cells, and antioxidants reverse this effect. Moreover, EGCG-induced PLD activation was reduced by PKC inhibitors or down-regulation of PKC. Taken together, these results show that, in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving changes in the redox state that stimulates a PLC-gamma1 [Ins(1,4,5)P(3)-Ca(2+)]-CaM kinase II-PLD pathway and a PLC-gamma1 (diacylglycerol)-PKC-PLD pathway.  相似文献   

13.
1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of lysophospholipid.  相似文献   

14.
PC12 cells contain at least three immunologically distinct phospholipase C (PLC) isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of PC12 cells with nerve growth factor (NGF) leads to an increase in the phosphorylation of PLC-gamma, but not of PLC-beta or PLC-delta. This increase can be seen in as little as 1 minute. The increased phosphorylation occurs on both serine and tyrosine residues, with the major increase being in the former. This result suggests the possibility that the NGF-dependent increase in phosphoinositide hydrolysis in PC12 cells is due to selective phosphorylation of PLC-gamma by serine and tyrosine protein kinases associated with the NGF receptor.  相似文献   

15.
Cross-linking the antigen receptor on B cells results in a rapid increase in protein tyrosine kinase activity as detected by increased phosphorylation on tyrosine residues of multiple proteins. Although the identity of most of this substrates remains unknown, some have been proposed. One possible substrate of the antigen receptor-associated kinase is phospholipase C (PLC). Since multiple isoforms of PLC have been identified, we have studied which isoforms are targets of the antigen receptor. PLC-gamma 1 and PLC-gamma 2 but not PLC-beta 1 or PLC-delta 1 were detected in human B cells. Immunoprecipitation with antibodies against PLC-gamma 1 or PLC-gamma 2 and subsequent Western blotting with anti-phosphotyrosine antibodies revealed that both PLC-gamma 1 and PLC-gamma 2 are tyrosine phosphorylated in stimulated but not in resting B cells. This was confirmed by experiments whereby B cell lysates were immunoprecipitated with anti-phosphotyrosine antibody and subsequently blotted with antibodies against PLC-gamma 1 or PLC-gamma 2. Further, the specific protein tyrosine kinase inhibitors, tyrphostins, which block phospholipase-C activation and proliferation of B cells also inhibited tyrosine phosphorylation on both PLC-gamma 1 and PLC-gamma 2. We conclude that both isoforms PLC-gamma 1 and PLC-gamma 2 are targets of the antigen receptor-associated protein tyrosine kinase.  相似文献   

16.
Aggregation of the high affinity receptor for IgE (Fc epsilon RI) on the surface of mast cells results in the rapid hydrolysis of membrane inositol phospholipids by phospholipase C (PLC). Although at least seven isoenzymes of PLC have been characterized in different mammalian cells, the isoenzyme involved in Fc epsilon RI-mediated signal transduction and the mechanism of its activation have not been demonstrated. We now report that PLC-gamma 1 is translocated to the membrane of mast cells after aggregation of Fc epsilon RI. Activation of rat basophilic leukemia cells, a rat mast cell line, with oligomeric IgE resulted in an increase in PLC activity in washed membrane preparations in a cell free assay containing exogenous [3H]phosphatidylinositol (PI). The increase in PLC activity has the same dose-response to oligomeric IgE as receptor mediated hydrolysis of inositol lipids (PI hydrolysis) in intact cells. Analysis by Western blot probed with anti-PLC-gamma 1 antibody revealed that there is a three- to fourfold increase in PLC-gamma 1 in membranes from activated cells. The increase in PLC activity is augmented a further 20% by the addition of orthovanadate to the incubation medium suggesting that a tyrosine phosphatase is involved in the down-regulation of this phenomenon. These findings demonstrate translocation of PLC-gamma 1 to the membrane following activation of a receptor which does not contain intrinsic tyrosine kinase activity. Activation of PLC-gamma 1 by this pathway may account for Fc epsilon RI-mediated PI hydrolysis.  相似文献   

17.
Growth of Chinese hamster lung fibroblasts (CCL39) on thrombin as sole mitogen is dependent on phosphatidylinositol (PI) metabolism and activation of the Na+/H+ antiporter. By modifying a H+ suicide selection developed for the isolation of antiporter mutants in these cells, we enriched for and isolated CCL39 variants deficient in the thrombin mitogenic response (thrombin nongrowers). These mutants retain alternate mitogenic mechanisms and, hence, grow well on media containing serum. When challenged with thrombin, the mutants show decreased, increased, or unchanged levels of inositol phosphates produced as compared with wild type cells. One of the mutants (D1-6b) has decreased inositol phosphates production not only with thrombin but also with serotonin (5-hydroxytryptamine) and AlF4-, suggesting a defect distal to the thrombin receptors. Extracts of this mutant reveal marked decreased phospholipase C activity toward PI. From the different phenotypes of the thrombin nongrowers, it is clear that the selection is general and that mutants with various biochemical defects should lead to a better understanding of the PI cycle as well as of functions essential to mitogenesis.  相似文献   

18.
The micro-organism Dictyostelium uses extracellular cAMP to induce chemotaxis and cell differentiation. Signals are transduced via surface receptors, which activate G proteins, to effector enzymes. The deduced protein sequence of Dictyostelium discoideum phosphatidylinositol-specific phospholipase C (PLC) shows strong homology with the mammalian PLC-delta isoforms. To study the role of PLC in Dictyostelium, a plc- mutant was constructed by disruption of the PLC gene. No basal or stimulated PLC activity could be measured during the whole developmental programme of the plc- cells. Loss of PLC activity did not result in a visible alteration of growth or development. Further analysis showed that developmental gene regulation, cAMP-mediated chemotaxis and activation of guanylyl and adenylyl cyclase were normal. Although the cells lack PLC activity, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was present at only slightly lower concentrations compared with control cells. Mass analysis of inositol phosphates demonstrated the presence of a broad spectrum of inositol phosphates in Dictyostelium, which was unaltered in the plc- mutant. Cell labelling experiments with [3H]inositol indicated that [3H]Ins(1,4,5)P3 was formed in a different manner in the mutant than in control cells.  相似文献   

19.
The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.  相似文献   

20.
We investigated the interaction of phospholipase C-gamma (PLC-gamma) with wild-type and mutant forms of the platelet-derived growth factor (PDGF) beta-receptor both in vivo and in vitro. After PDGF treatment of CHO cell lines expressing wild-type or either of two mutant (delta Ki and Y825F) PDGF receptors, PLC-gamma became tyrosine phosphorylated and associated with the receptor proteins. The receptor association and tyrosine phosphorylation of PLC-gamma correlated with the ability of these receptors to mediate ligand-induced phosphatidylinositol turnover. However, both the delta Ki and Y825F mutant receptors were deficient in transmitting mitogenic signals, suggesting that the PDGF-induced tyrosine phosphorylation and receptor association of PLC-gamma are not sufficient to account for the growth-stimulatory activity of PDGF. Wild-type and delta Ki mutant PDGF receptor proteins expressed with recombinant baculovirus vectors also associated in vitro with mammalian PLC-gamma. However, baculovirus-expressed c-fms, v-fms, c-src, and Raf-1 proteins failed to associate with PLC-gamma under similar conditions. Phosphatase treatment of the baculovirus-expressed PDGF receptor greatly decreased its association with PLC-gamma. This requirement for receptor phosphorylation was also observed in vivo, where PLC-gamma could not associate with a mutant PDGF receptor (K602A) defective in autophosphorylation. PLC-gamma also coimmunoprecipitated with two other putative receptor substrates, the serine-threonine kinase Raf-1 and the 85-kilodalton phosphatidylinositol-3' kinase, presumably through its association with the ligand-activated receptor. Furthermore, baculovirus-expressed Raf-1 phosphorylated purified PLC-gamma in vitro at sites which showed increased serine phosphorylation in vivo in response to PDGF. These results suggest that PDGF directly influences PLC activity by inducing the association of PLC-gamma with a receptor signaling complex, resulting in increased tyrosine and serine phosphorylation of PLC-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号