首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function‐based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to ‘learn’ by cumulative trial‐and‐error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher‐level units entail the suppression of selection at lower levels, Darwinian immunity re‐opens cell‐level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell‐level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re‐invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system – the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the ‘Big Bang’ of vertebrate immunity, arguing that its origin involved a ‘difficult’ (i.e. low‐probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates.  相似文献   

2.
The inheritance of acquired epigenetic variations   总被引:3,自引:0,他引:3  
There is evidence that the functional history of a gene in one generation can influence its expression in the next. In somatic cells, changes in gene activity are frequently associated with changes in the pattern of methylation of the cytosines in DNA; these methylation patterns are stably inherited. Recent work suggests that information about patterns of methylation and other epigenetic states can also be transmitted from parents to offspring. This evidence is the basis of a model for the inheritance of acquired epigenetic variations. According to the model, an environmental stimulus can induce heritable chromatin modifications which are very specific and predictable, and might result in an adaptive response to the stimulus. This type of response probably has most significance for adaptive evolution in organisms such as fungi and plants, which lack distinct segregation of the soma and germ line. However, in all organisms, the accumulation of specific and random chromatin modifications in the germ line may be important in speciation, because these modifications could lead to reproductive isolation between populations. Heritable chromatin variations may also alter the frequency and distribution of classical mutations and meiotic recombination. Therefore, inherited epigenetic changes in the structure of chromatin can influence neo-Darwinian evolution as well as cause a type of "Lamarckian" inheritance.  相似文献   

3.
Since the 1990s, the terms “Lamarckism” and “Lamarckian” have seen a significant resurgence in biological publications. The discovery of new molecular mechanisms (DNA methylation, histone modifications, RNA interference, etc.) have been interpreted as evidence supporting the reality and efficiency of the inheritance of acquired characters, and thus the revival of Lamarckism. The present paper aims at giving a critical evaluation of such interpretations. I argue that two types of arguments allow to draw a clear distinction between the genuine Lamarckian concept of inheritance of acquired characters and transgenerational epigenetic inheritance. The first concerns the explanandum of the processes under consideration: molecular mechanisms of transgenerational epigenetic inheritance are understood as evolved products of natural selection. This means that the kind of inheritance of acquired characters they might be responsible for is an obligatory emergent feature of evolution, whereas traditional Lamarckisms conceived the inheritance of acquired characters as a property inherent in living matter itself. The second argument concerns the explanans of the inheritance of acquired characters: in light of current knowledge, epigenetic mechanisms are not able to drive adaptive evolution by themselves. Emergent Lamarckian phenomena would be possible if and only if individual epigenetic variation allowed the inheritance of acquired characters to be a factor of unlimited change. This implies specific requirements for epigenetic variation, which I explicitly define and expand upon. I then show that given current knowledge, these requirements are not empirically grounded.  相似文献   

4.
The article addresses the question whether culture evolves in a Lamarckian manner. I highlight three central aspects of a Lamarckian concept of evolution: the inheritance of acquired characteristics, the transformational pattern of evolution, and the concept of directed changes. A clear exposition of these aspects shows that a system can be a Darwinian variational system instead of a Lamarckian transformational one, even if it is based on inheritance of acquired characteristics and/or on Lamarckian directed changes. On this basis, I apply the three aspects to culture. Taking for granted that culture is a variational system, based on selection processes, I discuss in detail the senses in which cultural inheritance can be said to be Lamarckian and in which sense problem solving, a major factor in cultural change, leads to directed variation.  相似文献   

5.
6.
7.
Here we discuss the challenge posed by self-organization to the Darwinian conception of evolution. As we point out, natural selection can only be the major creative agency in evolution if all or most of the adaptive complexity manifest in living organisms is built up over many generations by the cumulative selection of naturally occurring small, random mutations or variants, i.e., additive, incremental steps over an extended period of time. Biological self-organization—witnessed classically in the folding of a protein, or in the formation of the cell membrane—is a fundamentally different means of generating complexity. We agree that self-organizing systems may be fine-tuned by selection and that self-organization may be therefore considered a complementary mechanism to natural selection as a causal agency in the evolution of life. But we argue that if self-organization proves to be a common mechanism for the generation of adaptive order from the molecular to the organismic level, then this will greatly undermine the Darwinian claim that natural selection is the major creative agency in evolution. We also point out that although complex self-organizing systems are easy to create in the electronic realm of cellular automata, to date translating in silico simulations into real material structures that self-organize into complex forms from local interactions between their constituents has not proved easy. This suggests that self-organizing systems analogous to those utilized by biological systems are at least rare and may indeed represent, as pre-Darwinists believed, a unique ascending hierarchy of natural forms. Such a unique adaptive hierarchy would pose another major challenge to the current Darwinian view of evolution, as it would mean the basic forms of life are necessary features of the order of nature and that the major pathways of evolution are determined by physical law, or more specifically by the self-organizing properties of biomatter, rather than natural selection.  相似文献   

8.
Stationary-phase mutation in microbes can produce selected (''adaptive'') mutants preferentially. In one system, this occurs via a distinct, recombination-dependent mechanism. Two points of controversy have surrounded these adaptive reversions of an Escherichia coli lac mutation. First, are the mutations directed preferentially to the selected gene in a Lamarckian manner? Second, is the adaptive mutation mechanism specific to the F plasmid replicon carrying lac? We report that lac adaptive mutations are associated with hypermutation in unselected genes, in all replicons in the cell. The associated mutations have a similar sequence spectrum to the adaptive reversions. Thus, the adaptive mutagenesis mechanism is not directed to the lac genes, in a Lamarckian manner, nor to the F'' replicon carrying lac. Hypermutation was not found in non-revertants exposed to selection. Therefore, the genome-wide hypermutation underlying adaptive mutation occurs in a differentiated subpopulation. The existence of mutable subpopulations in non-growing cells is important in bacterial evolution and could be relevant to the somatic mutations that give rise to cancers in multicellular organisms.  相似文献   

9.
Secondary plant products perform important functions within the complex interactions between plants and their environment, e.g. as protective agents against pathogens and herbivores, or as attractants for potential pollinators. We are all aware that the enormous diversity of these natural products resulted from evolutionary processes driven by the selection of advantageous properties. However, when these nexuses are mentioned, very often we incline to formulate ‘Plants have acquired the ability to synthesize secondary plant products in order to …’ without realising that such a statement contradicts the Darwinian principles of evolution and corresponds to a Lamarckian view of teleological evolution. One of the major reasons for these automatic and unconscious misapprehensions is because of the ambiguous usage of the term ‘biological function’, which is very often thought to comprise an intention or a special purpose.  相似文献   

10.
For evolution by natural selection to occur it is classically admitted that the three ingredients of variation, difference in fitness and heredity are necessary and sufficient. In this paper, I show using simple individual-based models, that evolution by natural selection can occur in populations of entities in which neither heredity nor reproduction are present. Furthermore, I demonstrate by complexifying these models that both reproduction and heredity are predictable Darwinian products (i.e. complex adaptations) of populations initially lacking these two properties but in which new variation is introduced via mutations. Later on, I show that replicators are not necessary for evolution by natural selection, but rather the ultimate product of such processes of adaptation. Finally, I assess the value of these models in three relevant domains for Darwinian evolution.  相似文献   

11.
It has long been known that adaptive evolution can occur through genetic mutations in DNA sequence, but it is unclear whether adaptive evolution can occur through analogous epigenetic mechanisms, such as through DNA methylation. If epigenetic variation contributes directly to evolution, species under threat of disease, invasive competition, climate change or other stresses would have greater stores of variation from which to draw. We looked for evidence of natural selection acting on variably methylated DNA sites using population genomic analysis across three climatologically distinct populations of valley oaks. We found patterns of genetic and epigenetic differentiations that indicate local adaptation is operating on large portions of the oak genome. While CHG methyl polymorphisms are not playing a significant role and would make poor targets for natural selection, our findings suggest that CpG methyl polymorphisms as a whole are involved in local adaptation, either directly or through linkage to regions under selection.  相似文献   

12.
The immune systems that protect organisms from infectious agents invariably have a cost for the host. In bacteria and archaea CRISPR-Cas loci can serve as adaptive immune systems that protect these microbes from infectiously transmitted DNAs. When those DNAs are borne by lytic viruses (phages), this protection can provide a considerable advantage. CRISPR-Cas immunity can also prevent cells from acquiring plasmids and free DNA bearing genes that increase their fitness. Here, we use a combination of experiments and mathematical-computer simulation models to explore this downside of CRISPR-Cas immunity and its implications for the maintenance of CRISPR-Cas loci in microbial populations. We analyzed the conjugational transfer of the staphylococcal plasmid pG0400 into Staphylococcus epidermidis RP62a recipients that bear a CRISPR-Cas locus targeting this plasmid. Contrary to what is anticipated for lytic phages, which evade CRISPR by mutations in the target region, the evasion of CRISPR immunity by plasmids occurs at the level of the host through loss of functional CRISPR-Cas immunity. The results of our experiments and models indicate that more than 10−4 of the cells in CRISPR-Cas positive populations are defective or deleted for the CRISPR-Cas region and thereby able to receive and carry the plasmid. Most intriguingly, the loss of CRISPR function even by large deletions can have little or no fitness cost in vitro. These theoretical and experimental results can account for the considerable variation in the existence, number and function of CRISPR-Cas loci within and between bacterial species. We postulate that as a consequence of the opposing positive and negative selection for immunity, CRISPR-Cas systems are in a continuous state of flux. They are lost when they bear immunity to laterally transferred beneficial genes, re-acquired by horizontal gene transfer, and ascend in environments where phage are a major source of mortality.  相似文献   

13.

Background

Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood.

Scope of Review

This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis.

Major Conclusions

It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status.

General Significance

Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

14.
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.  相似文献   

15.
Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that “priming” and “epigenetic learning” may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.  相似文献   

16.
Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level.  相似文献   

17.
18.
Gene duplication is the main source of evolutionary novelties. However, the problem with duplicates is that the purifying selection overlooks deleterious mutations in the redundant sequence, which therefore, instead of gaining a new function, often degrades into a functionless pseudogene. This risk of functional loss instead of gain is much higher for small populations of higher organisms with a slow and complex development. We propose that it is the epigenetic tissue/stage-complementary silencing of duplicates that makes them exposable to the purifying selection, thus saving them from pseudogenization and opening the way towards new function(s). Our genome-wide analyses of gene duplicates in several eukaryotic species combined with the phylogenetic comparison of vertebrate alpha- and beta-globin gene clusters strongly support this epigenetic complementation (EC) model. The distinctive condition for a new duplicate to survive by the EC mechanism seems to be its repositioning to an ectopic site, which is accompanied by changes in the rate and direction of mutagenesis. The most distinguished in this respect is the human genome. In this review, we extend and discuss the data on the EC- and repositioning-dependent fate of gene duplicates with the special emphasis on the problem of detecting brief postduplication period of adaptive evolution driven by positive selection. Accordingly, we propose a new CpG-focused measure of selection that is insensitive to translocation-caused biases in mutagenesis.  相似文献   

19.
Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy.  相似文献   

20.
A growing bulk of recent data from different fields as molecular biology, developmental biology, genetics, paleontology and phylogenetics shows that organisms play a more active role in their evolution than what postulated by the random variation-natural selection paradigm of the neo-Darwinian synthesis. Organisms show during development and morphogenesis autopoietic processes which are related to their body-plan potentialities. These potentialities are expressed through regulatory networks in which a plastic genome participates together with proteins and other substances in an epigenetic space. The epigenetic systems which arise from this interaction may be inherited and then assume a significant role in evolution becoming the source of new acquired characters. The acquisition of new traits through the epigenetic systems is influenced directly by environmental cues. If this process is coherent with the environmental demands it co-operates with natural selection in organism adaptation. An outstanding role in this context may be played by phenotypic plasticity if, as emerges in recent views, it may constitute a general basis for genetic assimilation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号