首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin (PGE, 6-keto PGF) output by cells dispersed from human amnion and decidua in the presence of increasing levels (0–5000 ng/ml) of estradiol-17β (E2) or 2-hydroxyestradiol-17β (2-OH E2) was studied in relation to parturition. Tissues were obtained from women at term either before (CS) or after (SL) spontaneous labor and vaginal delivery. In the absence of estrogens, the output of both PGs from amnion increased significantly with labor. No significant increase in decidua PG output occurred with labor. Neither estrogen influenced CS amnion PG output. However, both E2 and 2-OH E2 stimulated SL amnion PGE output (2-OH E2>E2) while having no affect on 6-keto PGF output. Only the highest dose of 2-OH E2 stimulated PGE output in CS decidua, but both estrogens significantly inhibited 6-keto PGF output in this tissue. In SL decidua only 2-OH E2 significantly stimulated PGE, and neither estrogen affected 6-keto PGF output. These results might suggest that estrogens modulate PG biosynthesis at the level of endoperoxide to primary PG conversion.  相似文献   

2.
Corticotropin-releasing hormone is produced by the human placenta and fetal membranes, but its physiological significance is not established. We examined the possibility that CRH might affect prostaglandin output by these intra-uterine tissues. Primary cultures of amnion, chorion, decidua and placenta were established from tissue obtained from women at term elective cesarean section were maintained in the presence of increasing concentrations of synthetic hCRH. PG output at 48h was measured by radioimmunoassay. hCRH stimulated PGE2 output by amnion, chorion and placenta, but not by decidual tissue. PGF2 alpha output was stimulated in amnion, decidua and placenta but not chorion, whereas output of 13, 14-dihydro-15-keto PGF2 alpha was stimulated in all four tissues. We conclude that hCRH stimulates prostaglandin output by human placenta, decidua and the fetal membranes, raising the possibility of paracrine or autocrine interactions between CRH and prostaglandins in vivo.  相似文献   

3.
We investigated the effects of calcium channel blockers on generation of prostaglandin (PG) E2 and 6-keto PGF1 alpha by gastric mucosal surface epithelium. Surface epithelial cells (SEC) isolated from rat gastric mucosa were incubated with either verapamil (1 or 10 micrograms/ml), diltiazem (2.5 or 25 micrograms/ml) or nifedipine (2.5 or 25 micrograms/ml) for 30 min at 37 degrees C in calcium containing or calcium-free medium. Verapamil (both doses) significantly increased PGE2 and 6-keto PGF1 alpha generation by the surface epithelial cells but only in calcium containing medium. Diltiazem did not affect PG generation in calcium containing nor calcium-free medium. Nifedipine 25 micrograms/ml decreased PGE2 but increased 6-keto PGF1 alpha generation. The inhibitory effect of nifedipine on PGE2 generation was abolished in calcium-free medium, while the calmodulin antagonist did not affect verapamil-induced increase in PG generation.  相似文献   

4.
The regulation of prostaglandin (PG) production by the uterine decidua may be an important mechanism controlling the onset and maintenance of human parturition. The present in vitro study has evaluated the potential for endothelin-1 (ET-1) to activate cell signalling and PGE2 alpha production in human primary decidua cell cultures. ET-1 stimulated a dose-dependent increase in inositol phospholipid hydrolysis and PG precursor release as evidenced by respective increases in [3H] inositol monophosphate accumulation and [14C] arachidonate release from radiolabelled decidua cells. PGF2 alpha production was increased in some but not all cell preparations in response to ET-1 alone. Pretreatment of decidua cells with interleukin-1 beta (IL-1 beta) enhanced PGF2 alpha production but not arachidonate release in response to ET-1. These in vitro observations support a possible role for ET-1 in the regulation of decidual PG production during parturition.  相似文献   

5.
Two experiments were conducted to determine the effects of 2-hydroxy-estradiol-17 beta (2-OH-E2; 0, 50 and 100 microM) and estradiol-17 beta (E2; 0, 25 and 50 microM) on prostaglandin (PG) E and PGF2 alpha synthesis by day-10 pig blastocysts (day 0 is first day of estrus). Blastocysts were incubated in a modified Krebs-Ringer bicarbonate medium, supplemented with bovine serum albumin (4 mg/ml) and the vitamins and amino acids (essential and nonessential) in Minimum Essential Medium (without phenol red or antibiotics). The incubations were conducted at 39 degrees C for three 2-h periods; the second and third periods included an E2 or catechol estrogen treatment. Release of PGF2 alpha into the culture medium decreased (p less than 0.001) linearly with increasing concentrations of 2-OH-E2 in both periods. Release of PGE was not affected by 2-OH-E2, therefore 2-OH-E2 increased (p less than 0.06) the PGE:PGF2 alpha. When E2 was added to the medium, release of PGE was decreased (p less than 0.01) during the second and third periods. Release of PGF2 alpha also was decreased (p less than 0.05) by E2 during period 2, but E2 did not alter the PGE:PGF2 alpha. Content of PGs in blastocysts at recovery was less than 10% of the PGs released in vitro. Therefore, these studies demonstrate effects of both the primary and catechol forms of E2 on the synthesis of PGE and PGF2 alpha. Catechol estrogens and E2 may inhibit PG synthesis and modify the PGE:PGF2 alpha during the establishment of pregnancy in pigs.  相似文献   

6.
Dispersed cells were prepared from amniotic membranes obtained either by caesarian section near term before labos (CS) or after spontaneous vaginal delivery (SL) and from human endometrial curettings. The cells were maintained separately in primary culture for about 18 h. Production rates (PR) of PGE and PGF during incubation for 1 h in defined medium were determined whent the cell-types were separate (n=60) or combined (n=27) and when endometrial cells were incubated in medium conditioned by CS amnion cells (n=13) or SL amnion cells (n=12). The PR of PGE by CS amnion cells was five times greater than that of PGF and there was a two-fold increase (p <0.01) in PGE but not PGF by SL cells. Co-incubation was associated with a 25–32% fall in PR of both PGE and PGF (p <0.01) compared to the sum from separately incubated cells when CS cells were used whereas values for co-incubated SL cells did not differ from controls. Conditioned medium from CS but not SL cells inhibited PGE and PGF output by 30% and 40% (p <0.01) respectively. These findings suggest that human amnion cells release an inhibitor of prostaglandin synthesis in endometrial cells.  相似文献   

7.
There is substantial evidence that decidual activation, in association with infection, is linked with the onset of both preterm and term labor. We therefore undertook the present study to evaluate prostaglandin production and its potential regulation by inflammatory mediators in human decidual cells in primary monolayer culture. Upon attaining confluence, the cells were incubated with endotoxin, interleukin 1 alpha (IL1 alpha), interleukin 1 beta (IL1 beta); or tumor necrosis factor (TNF). Production of prostaglandin (PG) E2 and PGF2 alpha was determined using specific radioimmunoassays. Endotoxin and these cytokines all induced significant concentration-dependent increases in PGE2 and PGF2 alpha production. Our results suggest that term human decidual cells are responsive to endotoxin and cytokines and that generation of these substances in the decidua or nearby (eg. in response to infection) will lead to increased prostaglandin production and uterine contractions.  相似文献   

8.
In cyclic hamsters, exogenous progesterone (100 micrograms) administered s.c. at 09:00 h on the day of dioestrus II reduced prostaglandin (PG) E and 6-keto PGF-1 alpha but not PGF concentrations in preovulatory follicles measured at 09:00 h of pro-oestrus. The injection of 10 micrograms ovine LH (NIADDK-oLH-25) concurrently with 100 micrograms progesterone on dioestrus II prevented the decline in follicular PGE and 6-keto PGF-1 alpha values. Administration of LH alone did not significantly alter follicular PG concentrations. Inhibition of follicular PGE accumulation by progesterone was due to a decline in granulosa PGE concentration and not thecal PGE. Progesterone administration also reduced follicular oestradiol concentrations. Administration of oestradiol-17-cyclopentanepropionate (ECP) (10 micrograms) with progesterone did not prevent the decline in follicular PGE and 6-keto PGF-1 alpha but did increase follicular PGF concentrations. However, ECP given alone on dioestrus II reduced follicular PGE and increased PGF concentrations in preovulatory follicles on pro-oestrus. It is concluded that exogenous progesterone administered on dioestrus II inhibits granulosa PGE and 6-keto PGF-1 alpha accumulation in preovulatory follicles, probably by reducing serum LH concentrations, and that the granulosa cells, which are LH-dependent, are a major source of follicular PGE.  相似文献   

9.
The pig conceptus and endometrium possess the ability to convert estrogens into catecholestrogens and catecholestrogens into methoxyestrogens. Experiments were carried out to evaluate the effect of catecholestrogens, methoxyestrogens and progesterone on the secretion of prostaglandin (PG) E and F2 alpha by porcine endometrial glandular and stromal cells in vitro. Both 2-hydroxyestradiol (2-OH-E2, 0-20 microM) and 4-hydroxyestradiol (4-OH-E2, 0-20 microM) increased (P less than .05) PGE and PGF2 alpha secretion by stromal cells in a dose response manner. Two-hydroxyestradiol tended (P less than .1) to decrease PGF2 alpha production by glandular cells. Two-methoxyestradiol (20 microM) suppressed (P less than .05) PGF2 alpha secretion by glandular and stromal cells. Four-methoxyestradiol (20 microM) stimulated (P less than .05) PGE production and PGE:PGF2 alpha ratio. Progesterone (.1 microM) suppressed (P less than .05) PG secretion in both cell types. We conclude that catecholestrogens, methoxyestrogens, and progesterone may participate in the establishment of pregnancy by modulating PG production in the endometrium.  相似文献   

10.
Prostaglandin (PG) E2 was the major PG released from the superfused guinea-pig uterus on Day 7, followed by in descending order 6-oxo-PGF1 alpha, thromboxane (TX) B2 and PGF2 alpha. However, the outputs of all four substances were low and were very similar. By Day 15, PGF2 alpha output from the superfused uterus had increased 21.9-fold, whereas the outputs of PGE2, 6-oxo-PGF1 alpha and TXB2 had increased only 1.8-, 2.9- and 1.2-fold, respectively. A mechanism is apparently "switched on" between Days 7 and 15 which causes a fairly specific increase in the release of PGF2 alpha from the uterus. Progesterone and/or estradiol had no effect on PG or TX release when superfused over the uterus on Day 7, nor did they have any effect on PG and TX release from the Day 15 uterus when administered separately. When administered together, however, they significantly inhibited PGF2 alpha, PGE2 and 6-oxo-PGF1 alpha, but not TXB2, release from the Day 15 uterus. Oxytocin had no effect on PG release from the Day 7 or Day 15 uterus, while A23187 stimulated PGF2 alpha, 6-oxo-PGF1 alpha and, to a lesser extent, PGE2 release from the uterus on both Days 7 and 15. Oxytocin is apparently not important for stimulating PGF2 alpha release from the guinea-pig uterus in relation to luteolysis, whereas increasing intracellular free Ca++ levels may be part of the mechanism for "switching on" uterine PG synthesis. Furthermore, changes in intracellular free Ca++ levels in the endometrium may be responsible for the pulsatile nature of PGF2 alpha release from the uterus.  相似文献   

11.
Increased production of prostaglandins and cytokines by amnion, particularly prostaglandin (PG) E2, interleukin (IL)-6 and IL-8, is thought to be an important event in infection-associated preterm labour. We characterized the amnion-derived AV3 cell line to determine its appropriateness as a model for investigation of the regulation of amnion cytokine and PG production. Amnion-derived AV3 cells were treated with tumour necrosis factor-alpha (TNF-alpha, interleukin-1beta (IL-1beta), epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) and IL-6, IL-8 and prostaglandin production was determined by immunoassay. Production of IL-6 and IL-8 rose dramatically with all treatments. PGE2, but not PGF2alpha or 6-keto-PGF1alpha, biosynthesis was also increased in a concentration-dependent manner with all treatments. A rapid increase in PGHS-2 (but not PGHS-1) mRNA expression was observed in response to TNF-alpha and IL-1beta. We conclude that the AV3 cell line inflammatory response profile is similar to those observed in primary amnion and other amnion-derived cell lines, and is an appropriate model for human amnion.  相似文献   

12.
Previously, we observed that alloxan-induced in vitro cytotoxicity and apoptosis in an insulin secreting rat insulinoma, RIN, cells was prevented by prior exposure to prostaglandin (PG) E(1), PGE(2), PGI(2), PGF(1)(alpha), and PGF(3)(alpha) (P<0.05 compared to alloxan), whereas thromboxane B(2) (TXB(2)) and 6-keto-PGF(1)(alpha) were ineffective. In an extension of these studies, we now report that prior intraperitoneal administration of PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) prevented alloxan-induced diabetes mellitus in male Wistar rats, whereas PGI(2), TXB(2), and 6-keto PGF(1)(alpha) were not that effective. PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) not only attenuated chemical-induced diabetes mellitus but also restored the antioxidant status to normal range in red blood cells and pancreas. These results suggest that PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) can abrogate chemically induced diabetes mellitus in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus.  相似文献   

13.
The effect of amniotic fluid obtained from second trimester (16–20 wks) and term pregnancies (38–41 wks) on the production of PGE and F by human amnion, decidua and myometrium at term was determined using tissue slices incubated in vitro. Midpregnancy amniotic fluid neither inhibited nor stimulated the prostanoid production by any of the tissues. In contrast, term amniotic fluid obtained before as well as after the onset of labor markedly increased the production of both PGE and PGF in decidua and myometrium from levels in Krebs solution. The prostanoid production (PGE + PGF) in amnoin was not significantly increased but the proportion of PGF was raised during incubations in term amniotic fluid. In decidua and myometrium the increase in PGE and PGF production in term amniotic fluid was approximately 200 and 400 percent respectively, from control values in Krebs solution. We propose that the stimulatory activity in term amniotic fluid in responsible for the accelerated synthesis of prostaglandins after of membranes, which is reflected in raised PGF metabolite levels in maternal circulation. It may also be the reason for the rise in amniotic fluid prostaglandin levels around the 35th week of gestation, and perhaps for the onset of labor.  相似文献   

14.
This is the first report to show that epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulate the production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in the thyroid gland. In cultured porcine thyroid cells, EGF and TPA stimulate PGE2 and 6-keto PGF1 alpha production; the maximum PG levels were obtained after 3-4 h incubation with EGF or TPA; the addition of as little as 10(-11) M EGF or 5 X 10(-11) M TPA resulted in increases in PGE2 and 6-keto PGF1 alpha, and the maximum levels were obtained with 10(-8)-10(-7) M EGF or TPA. This report also shows that EGF and TPA stimulate [3H] thymidine incorporation.  相似文献   

15.
The capacity of separated glandular and stromal cells from endometrium and first trimester decidua to release prostaglandins (PGs) was studied over 48 hours in culture. Glandular preparations released more PGs than stromal preparations in all tissues. Stromal release of PGs did not alter throughout the cycle or in early pregnancy but the capacity of glandular preparations to release PGs varied considerably. Proliferative glands released most PGF2 alpha and PGE2 followed by secretory glands and decidua. Histamine (10(-5)) stimulated PG release from endometrial and decidual glands but the response of proliferative glands was greatest. Actinomycin D stimulated release of PGF2 alpha and PGE2 from glandular cells of secretory endometrium and decidua. These results suggest that in vitro release of PGs is suppressed after ovulation and is in part due to inhibition of PG release by a protein or proteins synthesized in the glandular fraction of secretory endometrium or decidua.  相似文献   

16.
Antiprogesterone steroid, ZK98299 (Schering, Germany) or RU38486 (Roussel Uclaf, France), has been administered to ovariectomized early pregnant rats receiving continuous steroid replacement. At 24 h later, uterine explants of rats treated with ZK98299 produced significantly greater amounts of prostaglandin E (PGE) than did controls or animals treated with RU38486. The PGE/PGF2 alpha production ratio for uteri of rats treated with ZK98299 or RU38486 was markedly lowered compared to controls, and a significant decrease occurred in the PGE/6-keto PGF1 alpha production ratio for rats treated with RU38486. For ovariectomized early pregnant rats in which progesterone has been withdrawn, a significant reduction in uterine PGE production occurred when compared to control animals. There was also a marked decrease in PGE/PGF2 alpha production ratio, and the PGE/6-keto PGF1 alpha production ratio tended to be lowered relative to controls. The stimulated production (as by ZK98299) or unchanged production of PGE (as by RU38486) indicates a selective action on uterine PGE synthesis among the antiprogesterone steroids, and these findings cannot be explained simply in terms of a blockage of progesterone receptors.  相似文献   

17.
The exogenous and endogenous syntheses of prostaglandins (PG's) by the cochlea of adult mongolian gerbils were studied in vitro. After incubation of the whole membraneous cochlea with [3H]-arachidonic acid (AA), syntheses of PGF2 alpha, 6-keto PGF1 alpha, PGE2, thromboxane (TX) P2 and PGD2 were evidenced in this order. The synthesis of radioactive PG's was almost completely inhibited by incubation with 10(-5) M indomethacin. No significant amounts of those PG's were detected by radioimmunoassay (RIA) in the cochlea obtained from animals killed by microwave irradiation at 5.0 kw for 0.8 sec. However, when the homogenate of the whole membraneous cochlea obtained from animals without microwave irradiation was incubated at 37 degrees C for 0-15 min, PGD2, PGE2, PGF2 alpha and 6-keto PGF1 alpha were found to be formed from endogenous AA in the cochlea by RIA. PG's were formed already at 0 time to considerable level (PGD2, PGF2 alpha and 6-keto PGF1 alpha, 90-120 pg/cochlea; PGE2, 370 pg/cochlea), reached to the maximum level (PGD2, PGF2 alpha and 6-keto PGF1 alpha, 170-200 pg/cochlea; PGE2, 500 pg/cochlea) at a 5-min incubation, and then gradually decreased. On the other hand, the amount of TXB2 was lower than the detection limit by RIA (less than 50 pg/cochlea) even after the incubation. The cochlea was dissected into three parts: organ of Corti + modiolus (OC + M), lateral wall (LW), and cochlear nerve (CN), and then PG's formed by these tissues were determined after a 5-min incubation of the homogenates. In the CN and OC + M, PGE2 was the major PG (100 and 160 pg/tissue, respectively), and the amounts of PGD2, PGF2 alpha and 6-keto PGF1 alpha were about 1/3 of those of PGE2. In the LW, the amounts of PGD2, PGE2, PGF2 alpha and 6-keto PGF1 alpha were about the same level (70-100 pg/LW).  相似文献   

18.
Prostaglandins (PGs) are known to modulate the proper cyclicity of bovine reproductive organs. The main luteolytic agent in ruminants is PGF2alpha, whereas PGE2 has luteotropic actions. Estradiol 17beta (E2) regulates uterus function by influencing PG synthesis. Phytoestrogens structurally resemble E2 and possess estrogenic activity; therefore, they may mimic the effects of E2 on PG synthesis and influence the reproductive system. Using a cell-culture system of bovine epithelial and stromal cells, we determined cell-specific effects of phytoestrogens (i.e., daidzein, genistein), their metabolites (i.e., equol and para-ethyl-phenol, respectively), and E2 on PGF2alpha and PGE2 synthesis and examined the intracellular mechanisms of their actions. Both PGs produced by stromal and epithelial cells were significantly stimulated by phytoestrogens and their metabolites. However, PGF2alpha synthesis by both kinds of cells was greater stimulated than PGE2 synthesis. Moreover, epithelial cells treated with phytoestrogens synthesized more PGF2alpha than stromal cells, increasing the PGF2alpha to PGE2 ratio. The epithelial and stromal cells were preincubated with an estrogen-receptor (ER) antagonist (i.e., ICI), a translation inhibitor (i.e., actinomycin D), a protein kinase A inhibitor (i.e., staurosporin), and a phospholipase C inhibitor (i.e., U73122) for 0.5 hrs and then stimulated with equol, para-ethyl-phenol, or E2. Although the action of E2 on PGF2alpha synthesis was blocked by all reagents, the stimulatory effect of phytoestrogens was blocked only by ICI and actinomycin D in both cell types. Moreover, in contrast to E2 action, phytoestrogens did not cause intracellular calcium mobilization in either epithelial or stromal cells. Phytoestrogens stimulate both PGF2alpha and PGE2 in both cell types of bovine endometrium via an ER-dependent genomic pathway. However, because phytoestrogens preferentially stimulated PGF2alpha synthesis in epithelial cells of bovine endometrium, they may disrupt uterus function by altering the PGF2alpha to PGE2 ratio.  相似文献   

19.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F2alpha binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 x 10(-9)M and 1.1 x 10(-8)M for PGE1 and PGF2alpha, respectively. Competition of several natural prostaglandins for the PGE1 and PGF2alpha bovine luteal specific binding sites indicates specificity for the 9-keto or 9alpha-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5, 6-cis-double bond as well. Bovine luteal function was affected following treatment of heifers with 25 mg PGF2alpha as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contract, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF2alpha relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF2alpha induced luteolysis in the bovine, PGF2alpha relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

20.
Cycloheximide produced a large increase in prostaglandin (PG) E2 output and smaller increases in PGF2 alpha and 6-keto-PGF1 alpha when superfused over the guinea-pig uterus for 20 min. This stimulation of the outputs of these 3 PGs by cycloheximide did not require extracellular calcium. TMB-8 (an intracellular calcium antagonist) had no effect on the stimulation of PGE2 output by cycloheximide, but it completely prevented the stimulation of PGF2 alpha and 6-keto-PGF1 alpha outputs. W-7 (a calmodulin antagonist) had no effect on the stimulation of PGE2 and PGF2 alpha outputs by cycloheximide, but it partially reduced and delayed the stimulation of 6-keto-PGF1 alpha output. Neomycin (a phospholipase C inhibitor) did not prevent the increases in PGE2 and 6-keto-PGF1 alpha outputs produced by cycloheximide. However, neomycin (5 and 10 mM, but not 1 mM) inhibited the small increases in PGF2 alpha caused by cycloheximide. On its own, neomycin produced a dose-dependent, transient increase in 6-keto-PGF1 alpha output without affecting the outputs of PGF2 alpha and PGE2. It is concluded that different mechanisms are involved in the processes by which cycloheximide stimulates the syntheses of PGE2, PGF2 alpha and 6-keto-PGF1 alpha in the guinea-pig uterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号