首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distinct spatial approximations between residues within the secretin pharmacophore and its receptor can provide important constraints for modeling this agonist-receptor complex. We previously used a series of probes incorporating photolabile residues into positions 6, 12, 13, 14, 18, 22, and 26 of the 27-residue peptide and demonstrated that each covalently labeled a site within the receptor amino terminus. Although supporting a critical role of this domain for ligand binding, it does not explain the molecular mechanism of receptor activation. Here, we developed probes having photolabile residues at the amino terminus of secretin to explore possible approximations with a different receptor domain. The first probe incorporated a photolabile p-benzoyl-l-phenylalanine into the position of His(1) of rat secretin ([Bpa(1),Tyr(10)]secretin-27). Because His(1) is critical for function, we also positioned a photolabile Bpa as an amino-terminal extension, in positions -1 (rat [Bpa(-1),Tyr(10)]secretin-27) and -2 (rat [Bpa(-2),Gly(-1),Tyr(10)]secretin-27). Each analog was shown to be a full agonist, stimulating cAMP accumulation in receptor-bearing Chinese hamster ovary-SecR cells in a concentration-dependent manner, with the position -2 probe being most potent. They bound specifically and saturably, although the position 1 analog had lowest affinity, and all were able to label the receptor efficiently. Sequential specific cleavage, purification, and sequencing demonstrated that the sites of covalent attachment for each probe were high within the sixth transmembrane segment. This suggests that secretin binding may exert tension between the receptor amino terminus and the transmembrane domain to elicit a conformational change effecting receptor activation.  相似文献   

2.
The amino terminus of the secretin receptor (SecR) is known to be critical for natural agonist action, although the role it plays is still unclear. We have demonstrated that photolabile residues within both the amino-terminal (position 6) and carboxyl-terminal (positions 22 and 26) halves of secretin each covalently label receptor amino-terminal tail residues [Dong et al., J Biol Chem, 274:19161-19167 (1999), 274:903-909 (1999), and 275:26032-26039 (2000)]. Here, we extend this series of studies with an additional probe having its site of covalent attachment in a distinct region of the peptide, between amino- and carboxyl-terminal helical domains. This probe incorporated a photolabile (epsilon-p-benzoylbenzoyl)lysine in position 18 and a site for oxidative radioiodination [(tyrosine(10),(benzoyl-benzoyl)lysine(18))rat secretin-27]. This analog represented a full agonist, stimulating cAMP accumulation in Chinese hamster ovary-SecR cells in a concentration-dependent manner. It bound to the SecR specifically and saturably, and was able to efficiently label that molecule within its amino terminus. Sequential specific cleavage, purification, and sequencing demonstrated that this probe labeled receptor residue arginine(14), in the same subdomain as that labeled by previous probes. Consistent with the importance of this residue, alanine replacement mutagenesis (R14A) resulted in substantial reductions in the potency (127-fold) and binding affinity (400-fold) of secretin relative to its action at the wild-type receptor. We have been able to accommodate all four extant pairs of residue-residue approximations between divergent regions of the secretin pharmacophore and the first forty residues of the SecR into a credible molecular model of this interaction. Additional experimentally derived constraints will be necessary to determine the spatial positioning of this complex with the remainder of the SecR.  相似文献   

3.
The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.  相似文献   

4.
Dong M  Pinon DI  Miller LJ 《Regulatory peptides》2002,109(1-3):181-187
Photoaffinity labeling is a powerful approach for direct elucidation of residue-residue approximations as a ligand is bound to its receptor, providing important constraints for molecular modeling. Probes utilized for this need to incorporate photolabile sites of covalent attachment and an indicator, such as a radiolabel. Radioiodine provides a particularly useful high specific radioactivity label, but due to its size, can only be accommodated in limited positions within a peptide ligand. In this work, we attempted to develop a probe for the secretin receptor that would directly provide spatial approximation data for position 10 of secretin, its site of radiolabeling. This was achieved by incorporation into a secretin analogue of the radioiodinatable and photolabile benzophenone moiety, p-(4-hydroxybenzoyl)phenylalanine (OH-Bpa). An unintended additional modification of secretin in synthesizing this probe was the elimination of Gly(4). This probe was shown to bind to the secretin receptor specifically and saturably (K(i)=25.3+/-6.0 nM). It represented a full agonist, stimulating intracellular cAMP in a concentration-dependent manner (EC(50)=4.2+/-0.7 nM). It was also able to affinity label the secretin receptor in a specific and efficient manner. This probe should provide the opportunity to identify the region of the secretin receptor in spatial approximation with position 10, within the pharmacophore of secretin, leading to refinement of molecular conformational models of this agonist-bound receptor.  相似文献   

5.
The molecular basis of ligand binding and activation of family B G protein-coupled receptors is not yet clear due to the lack of insight into the structure of intact receptors. Although NMR and crystal structures of amino-terminal domains of several family members support consistency in general structural motifs that include a peptide-binding cleft, there are variations in the details of docking of the carboxyl terminus of peptide ligands within this cleft, and there is no information about siting of the amino terminus of these peptides. There are also no empirical data to orient the receptor amino terminus relative to the core helical bundle domain. Here, we prepared a series of five new probes, incorporating photolabile moieties into positions 2, 15, 20, 24, and 25 of full agonist secretin analogues. Each bound specifically to the receptor and covalently labeled single distinct receptor residues. Peptide mapping of labeled wild-type and mutant receptors identified that the position 15, 20, and 25 probes labeled residues within the distal amino terminus of the receptor, whereas the position 24 probe labeled the amino terminus adjacent to TM1. Of note, the position 2 probe labeled a residue within the first extracellular loop of the receptor, a region not previously labeled, providing an important new constraint for docking the amino-terminal region of secretin to its receptor core. These additional experimentally derived constraints help to refine our understanding of the structure of the secretin-intact receptor complex and provide new insights into understanding the molecular mechanism for activation of family B G protein-coupled receptors.  相似文献   

6.
The calcitonin receptor is a member of the class B family of G protein-coupled receptors, closely related to secretin and parathyroid hormone receptors. Although mechanisms of ligand binding have been directly explored for those receptors, current knowledge of the molecular basis of calcitonin binding to its receptor is based only on receptor mutagenesis. In this work we have utilized the more direct approach of photoaffinity labeling to explore spatial approximations between distinct residues within calcitonin and its receptor. For this we have developed two human calcitonin analogues incorporating a photolabile p-benzoyl-l-phenylalanine residue in the mid-region and carboxyl-terminal half of the peptide in positions 16 and 26, respectively. Both probes specifically bound to the human calcitonin receptor with high affinity and were potent stimulants of cAMP accumulation in calcitonin receptor-bearing human embryonic kidney 293 cells. They covalently labeled the calcitonin receptor in a saturable and specific manner. Further purification, deglycosylation, specific chemical and enzymatic cleavage, and sequencing of labeled wild type and mutant calcitonin receptors identified the sites of labeling for the position 16 and 26 probes as receptor residues Phe137 and Thr30, respectively. Both were within the extracellular amino terminus of the calcitonin receptor, with the former adjacent to the first transmembrane segment and the latter within the distal amino-terminal tail of the receptor. These data are consistent with affinity labeling of other members of the class B G protein-coupled receptors using analogous probes and may suggest a common ligand binding mechanism for this family.  相似文献   

7.
The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked. Therefore, we developed and characterized two high affinity, full-agonist photolabile GLP1 probes having sites for covalent attachment in positions 24 and 35. Both probes labeled the receptor specifically and saturably. Subsequent peptide mapping using chemical and proteinase cleavages of purified wild-type and mutant GLP1 receptor identified that the Arg131–Lys136 segment at the juxtamembrane region of the receptor amino terminus contained the site of labeling for the position 24 probe, and the specific receptor residue labeled by this probe was identified as Glu133 by radiochemical sequencing. Similarly, nearby residue Glu125 within the same region of the receptor amino-terminal domain was identified as the site of labeling by the position 35 probe. These data represent the first direct demonstration of spatial approximation between GLP1 and its intact receptor as docked, providing two important constraints for the modeling of this interaction. This should expand our understanding of the molecular basis of natural agonist ligand binding to the GLP1 receptor and may be relevant to other family members.  相似文献   

8.
Affinity labeling is a powerful tool to establish spatial approximations between photolabile residues within a ligand and its receptor. Here, we have utilized a cholecystokinin (CCK) analogue with a photolabile benzoylphenylalanine (Bpa) sited in position 24, adjacent to the pharmacophoric domain of this hormone (positions 27-33). This probe was a fully efficacious agonist that bound to the CCK receptor saturably and with high affinity (K(i) = 8.9 +/- 1.1 nm). It covalently labeled the CCK receptor either within the amino terminus (between Asn(10) and Lys(37)) or within the third extracellular loop (Glu(345)), as demonstrated by proteolytic peptide mapping, deglycosylation, micropurification, and Edman degradation sequencing. Truncation of the receptor to eliminate residues 1-30 had no detrimental effect on CCK binding, stimulated signaling, or affinity labeling through a residue within the pharmacophore (Bpa(29)) but resulted in elimination of the covalent attachment of the Bpa(24) probe to the receptor. Thus, the distal amino terminus of the CCK receptor resides above the docked ligand, compressing the portion of the peptide extending beyond its pharmacophore toward the receptor core. Exposure of wild type and truncated receptor constructs to extracellular trypsin damaged the truncated construct but not the wild type receptor, suggesting that this domain also may play a protective role. Use of these additional insights into molecular approximations provided key constraints for molecular modeling of the peptide-receptor complex, supporting the counterclockwise organization of the transmembrane helical domains.  相似文献   

9.
Photoaffinity labeling of receptors by bound agonists can provide important spatial constraints for molecular modeling of activated receptor complexes. Secretin is a 27-residue peptide hormone with a diffuse pharmacophoric domain that binds to the secretin receptor, a prototypic member of the Class B family of G protein-coupled receptors. In this work, we have developed, characterized, and applied two new photolabile probes for this receptor, with sites for covalent attachment in peptide positions 12 and 14, surrounding the previously most informative site of affinity labeling of this receptor. The [Tyr10,(BzBz)Lys12]rat secretin-27 probe covalently labeled receptor residue Val6, whereas the [Tyr10,(BzBz)Lys14]rat secretin-27 probe labeled receptor residue Pro38. When combined with previous photoaffinity labeling data, there are now seven independent sets of constraints distributed throughout the peptide and receptor amino-terminal domain that can be used together to generate a new molecular model of the ligand-occupied secretin receptor. The amino-terminal domain of this receptor presented a stable platform for peptide ligand interaction, with the amino terminus of the peptide hormone extended toward the transmembrane helix domain of the receptor. This provides clear insights into the molecular basis of natural ligand binding and supplies testable hypotheses regarding the molecular basis of activation of this receptor.  相似文献   

10.
The carboxyl-terminal domains of secretin family peptides have been shown to contain key determinants for high affinity binding to their receptors. In this work, we have examined the interaction between carboxyl-terminal residues within secretin and the prototypic secretin receptor. We previously utilized photoaffinity labeling to demonstrate spatial approximation between secretin residue 22 and the receptor domain that includes the first 30 residues of the amino terminus (Dong, M., Wang, Y., Pinon, D. I., Hadac, E. M., and Miller, L. J. (1999) J. Biol. Chem. 274, 903-909). Here, we further refined the site of labeling with the p-benzoyl-phenylalanine (Bpa(22)) probe to receptor residue Leu(17) using progressive cleavage of wild type and mutant secretin receptors (V13M and V16M) and sequence analysis. We also developed a new probe incorporating a photolabile Bpa at position 26 of secretin, closer to its carboxyl terminus. This analogue was also a potent agonist (EC(50) = 72 +/- 6 pm) and bound to the secretin receptor specifically and with high affinity (K(i) = 10.3 +/- 2.4 nm). It covalently labeled the secretin receptor at a single site saturably and specifically. This was localized to the segment between residues Gly(34) and Ala(41) using chemical and enzymatic cleavage of labeled wild type and A41M mutant receptor constructs and immunoprecipitation of epitope-tagged receptor fragments. Radiochemical sequencing identified the site of covalent attachment as residue Leu(36). These new insights, along with our recent report of contact between residue 6 within the amino-terminal half of secretin and this same amino-terminal region of this receptor (Dong, M., Wang, Y., Hadac, E. M., Pinon, D. I., Holicky, E. L., and Miller, L. J. (1999) J. Biol. Chem. 274, 19161-19167), support a key role for this region, making the molecular details of this interaction of major interest.  相似文献   

11.
Dong M  Liu G  Pinon DI  Miller LJ 《Biochemistry》2005,44(17):6693-6700
Type A and B cholecystokinin (CCK) receptors are highly homologous members of the class-I family of G protein-coupled receptors that bind CCK with high affinity. However, they have divergent structural specificities, with the type A receptor requiring seven carboxyl-terminal residues including a sulfated tyrosine and the type B receptor requiring only the carboxyl-terminal tetrapeptide. The aim of this work was to utilize affinity labeling to determine spatial approximations with photolabile p-benzoyl-l-phenylalanine (Bpa) residues sited at each end of CCK as docked at the type B CCK receptor, contrasting this with analogous work using similar probes docked at the type A receptor. Both probes were fully efficacious, potent agonists that stimulated intracellular calcium in receptor-bearing CHO-CCKBR cells (EC(50) values: Bpa(24) probe, 41 +/- 9 pM; Bpa(33) probe, 15 +/- 3.3 pM). They bound specifically, with high affinity (K(i) values: Bpa(24) probe, 0.60 +/- 0.17 nM; Bpa(33) probe, 0.58 +/- 0.11 nM). Cyanogen bromide cleavage of the covalently labeled receptor suggested the first extracellular loop as the region of labeling by each probe, distinct from the type A CCK receptor regions labeled using the same probes (third loop and amino-terminal tail, respectively). This was confirmed by subsequent enzymatic and chemical cleavage of labeled wild-type and mutant receptors. Sequential cycles of Edman degradation of labeled receptor fragments identified the specific residues within loop one labeled by each probe (Bpa(24) probe labeled Phe(122); Bpa(33) probe labeled Thr(119)). This provides a direct demonstration of distinct modes of docking the same high-affinity ligand to highly homologous receptors.  相似文献   

12.
Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7–36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr145, adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr205, within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.  相似文献   

13.
Amino-terminal regions of secretin-family peptides contain key determinants for biological activity and binding specificity, although the nature of interactions with receptors is unclear. A helix N-capping motif within this region has been postulated to directly contribute to agonist activity while also stabilizing formation of a helix extending toward the peptide carboxyl terminus and docking within the receptor amino terminus. We used cysteine trapping to systematically explore spatial approximations between cysteines replacing each residue in this motif of secretin (sec), Phe6, Thr7, and Leu10, and cysteines incorporated into the extracellular face of the receptor. Each peptide was a full agonist for cAMP, but had a lower binding affinity than natural hormone. These bound to COS cells expressing 61 receptor constructs incorporating cysteines in every position along each extracellular loop (ECL) and adjacent parts of transmembrane (TM) segments. Patterns of covalent labeling were distinct for each probe, with Cys6-sec labeling multiple residues in the carboxyl-terminal half of ECL2 and throughout ECL3, Cys7-sec predominantly labeling only single residues in the carboxyl-terminal end of ECL2 and the amino-terminal end of ECL3, and Cys10-sec not efficiently labeling any of these residues. These spatial constraints were used to refine our model of secretin bound to its receptor, now bringing ECL3 above the amino terminus of the ligand and revealing possible charge-charge interactions between this part of secretin and receptor residues in TM5, TM6, ECL2, and ECL3, which can orient and stabilize the peptide-receptor complex. This was validated by testing predicted approximations by mutagenesis and residue-residue complementation studies.  相似文献   

14.
Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe120 in the first extracellular loop. This was in contrast to its covalent attachment to Glu345 in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.  相似文献   

15.
The secretin receptor, a prototypic family B G protein-coupled receptor, forms a constitutive homodimeric complex that is stable even in the presence of hormone. Recently, a model of this agonist-bound receptor was built based on high resolution structures reported for amino-terminal domains of other family members. Although this model provided the best solution for all extant data, including 10 photoaffinity labeling constraints, a new such constraint now obtained with a position 16 photolabile probe was inconsistent with this model. As the secretin receptor forms constitutive homodimers, we explored whether secretin might dock across both protomers of the complex, an observation that could also contribute to the negative cooperativity observed. To directly explore this, we prepared six secretin analogue probes that simultaneously incorporated two photolabile benzoylphenylalanines as sites of covalent attachment, in positions known to label distinct receptor subdomains. Each bifunctional probe was a full agonist that labeled the receptor specifically and saturably, with electrophoretic migration consistent with labeling a single protomer of the homodimeric secretin receptor. No band representing radiolabeled receptor dimer was observed with any bifunctional probe. The labeled monomeric receptor bands were cleaved with cyanogen bromide to demonstrate that both of the photolabile benzoylphenylalanines within a single probe had established covalent adducts with a single receptor in the complex. These data are consistent with a model of secretin occupying a single secretin receptor protomer within the homodimeric receptor complex. A new molecular model accommodating all constraints is now proposed.  相似文献   

16.
The efficiency of covalent labeling of a receptor by a photolabile analogue of its natural ligand is dependent on the spatial approximation of the probe and its target. Systematic application of intrinsic photoaffinity labeling to the secretin receptor, a prototypic Family B G protein-coupled receptor, demonstrated reduced efficiency of labeling for amino-terminal and mid-region sites of labeling relative to carboxyl-terminal sites. Reduction of pH from 7.4 to 5.5 and reduction of temperature from 25 °C to 4 °C improved the efficiency of covalent labeling of the receptor with these probes. This correlated with sites of labeling at the interface between the receptor amino terminus and the receptor core, a region containing histidine residues that have their ionization affected in this pH range. Application to the calcitonin receptor, another Family B G protein-coupled receptor, yielded analogous results. These results support the consistent mode of docking peptide ligands to this group of receptors.  相似文献   

17.
The development of small molecule agonists for class B G protein-coupled receptors (GPCRs) has been quite challenging. With proof-of-concept that exenatide, the parenterally administered peptide agonist of the glucagon-like peptide-1 (GLP1) receptor, is an effective treatment for patients with diabetes mellitus, the development of small molecule agonists could have substantial advantages. We previously reported a lead for small molecule GLP1 receptor agonist development representing the pentapeptide NRTFD. In this work, we have prepared an NRTFD derivative incorporating a photolabile benzoylphenylalanine and used it to define its site of action. This peptide probe was a full agonist with potency similar to NRTFD, which bound specifically and saturably to a single, distinct site within the GLP1 receptor. Peptide mapping using cyanogen bromide and endoproteinase Lys-C cleavage of labeled wild type and M397L mutant receptor constructs identified the site of covalent attachment of NRTFD within the third extracellular loop above the sixth transmembrane segment (TM6). This region is the same as that identified using an analogous photolabile probe based on secretin receptor sequences, and has been shown in mutagenesis studies to be important for natural agonist action of several members of this family. While these observations suggest that small molecule ligands can act at a site bordering the third extracellular loop to activate this class B GPCR, the relationship of this site to the site of action of the amino-terminal end of the natural agonist peptide is unclear.  相似文献   

18.
The calcitonin receptor is a member of the class B family of G protein-coupled receptors, which contains numerous potentially important drug targets. Delineation of themes for agonist binding and activation of these receptors will facilitate the rational design of receptor-active drugs. We reported previously that a photolabile residue within the carboxyl-terminal half (residue 26) and mid-region (residue 16) of calcitonin covalently label the extracellular amino-terminal domain of this receptor (Dong, M., Pinon, D. I., Cox, R. F., and Miller, L. J. (2004) J. Biol. Chem. 279, 1167-1175). Chimeric receptor studies support the importance of this region and suggest important contributions of extracellular loop domains. To examine whether other parts of the ligand may contact those loops, we developed another probe that has its photolabile site of labeling within the amino-terminal half in position 8 of the ligand. This probe was a full agonist (EC(50) = 563 +/- 67 pm), stimulating cAMP accumulation in receptor-bearing human embryonic kidney 293 cells in a concentration-dependent manner. It bound specifically and saturably (K(i) = 14.3 +/- 1.9 nm) and was able to efficiently label the calcitonin receptor. By purification, specific cleavage, and sequencing of labeled wild-type and mutant calcitonin receptors, the site of attachment was identified as residue Leu(368) within the third extracellular loop of the receptor, a domain distinct from that labeled by previous probes. These data are consistent with a common ligand binding mechanism for receptors in this important family.  相似文献   

19.
Photoaffinity labeling is a powerful tool for the characterization of the molecular basis of ligand binding. We recently used this technique to demonstrate the proximity between a residue within the carboxyl-terminal half of a secretin-like ligand and the amino-terminal domain of the secretin receptor (Dong, M., Wang, Y., Pinon, D. I., Hadac, E. M., and Miller, L. J. (1999) J. Biol. Chem. 274, 903-909). In this work, we have developed another novel radioiodinatable secretin analogue ([Bpa6,Tyr10]rat secretin-27) that incorporates a photolabile p-benzoyl-L-phenylalanine (Bpa) residue into position 6 of the amino-terminal half of the ligand and used this to identify a specific receptor residue proximate to it. This probe specifically bound to the secretin receptor with high affinity (IC50 = 13.2 +/- 2.5 nM) and was a potent stimulant of cAMP accumulation in secretin receptor-bearing Chinese hamster ovary-SecR cells (EC50 = 720 +/- 230 pM). It covalently labeled the secretin receptor in a saturable and specific manner. Cyanogen bromide cleavage of this molecule yielded a single labeled fragment that migrated on an SDS-polyacrylamide gel at Mr = 19,000 that shifted to 10 after deglycosylation, most consistent with either of two glycosylated fragments within the amino-terminal tail. By immunoprecipitation with antibody directed to epitope tags incorporated into each of the two candidate fragments, the most distal fragment at the amino terminus was identified as the domain of labeling. The labeled domain was further refined to the first 16 residues by endoproteinase Lys-C cleavage and by cyanogen bromide cleavage of another receptor construct in which Val16 was mutated to Met. Radiochemical sequencing of photoaffinity-labeled secretin receptor fragments established that Val4 was the specific site of covalent attachment. This provides the first residue-residue contact between a secretin ligand and its receptor and will contribute substantially to the molecular understanding of this interaction.  相似文献   

20.
The amino terminus and third loop regions of class B G protein-coupled receptors play critical roles in ligand docking and action. For the prototypic secretin receptor, the hormone amino terminus is spatially approximated with receptor region high in transmembrane segment 6 (TM6), whereas residues ranging from position 6 through 26 label the amino terminus. Here, we focus on the role of charge of the secretin amino terminus, using a series of full-agonist, acetylated probes. Sites of covalent labeling were examined using sequential purification, chemical and enzymatic cleavage, and Edman degradation. High-affinity amino-terminally-blocked probes labeled the distal amino-terminal tail, rather than TM6, while adding a basic residue, again labeled TM6. These data suggest that the secretin amino terminus docks between the amino terminus and TM6 of the receptor, with this region of secretin likely interacting with an acidic residue within the receptor TM6 and the third extracellular loop. To explore this, candidate acidic residues were mutated to Ala (E341A, D342A, E345A, E351A). The E351A mutant markedly interfered with binding, biological activity, and internalization, whereas all others bound secretin and signaled and internalized normally. This supports the possibility that there is a charge-charge interaction between this residue and the amino terminus of secretin that is critical to its normal docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号