首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the possibility of intensification of biosorption of copper ions by the yeast Saccharomyces cerevisiae 1968 from a copper sulfate solution by immersing a metal 80-rod headpiece into the solution and applying an external magnetic field. The field was parallel or perpendicular to the axes of headpiece rods. It was shown that intensification of extraction of copper ions at various geometries of the system differed insignificantly and that copper ions were extracted from the solution via biosoprtion and cementation at the metal headpiece.  相似文献   

2.
High levels of heavy metals like copper ions in many industrial based effluents lead to serious environmental and health problems. Biosorption is a potential environmental biotechnology approach for biotreatment of aquatic sites polluted with heavy metal ions. Seaweeds have received great attention for their high bioremediation potential in recent years. However, the co-application of marine macroalgae for removal of heavy metals from wastewater is very limited. Thus, for the first time in literature, a coastal seaweed community composed of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species was applied to remove copper ions from synthetic aqueous medium in this study. The biosorption experiments in batch mode were conducted to examine the effects of operating variables including pH, biosorbent amount, metal ion concentration and contact time on the biosorption process. The biosorption behavior of biosorbent was described by various equilibrium, kinetic and thermodynamic models. The biosorption of copper ions was strongly influenced by the operating parameters. The results indicated that the equilibrium data of biosorption were best modeled by Sips isotherm model. The values of mean free energy of biosorption computed from Dubinin-Radushkevich isotherm model and the standard Gibbs free energy change indicated a feasible, spontaneous and physical biotreatment system. The pseudo-second-order rate equation successfully defined the kinetic behavior of copper biosorption. The pore diffusion also played role in the control of biosorption process. The maximum copper uptake capacity of biosorbent was found to be greater than those of many other biosorbents. The obtained results revealed that this novel biosorbent could be a promising material for copper ion bioremediation implementations.  相似文献   

3.
In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin–Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g?1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.  相似文献   

4.
AIMS: The aim was to develop a new, efficient and cost-effective biosorbent for the removal of heavy metals from aqueous solution. METHODS AND RESULTS: A new biosorbent was developed by immobilizing a unicellular green microalga Chlorella sorokiniana within luffa sponge discs and used for the removal of metal ions from aqueous solution. Microalgal-luffa sponge immobilized discs (MLIDs) removed Ni(II) very rapidly, with 97% of equilibrium loading being reached in 5 min. MLIDs were tested for their potential to remove Ni(II) from aqueous solution in fixed-bed column bioreactor. The regenerated MLIDs retained 92.9% of the initial binding capacity for Ni(II) up to five cycles of reuse. CONCLUSIONS: In this study for the first time, C. sorokiniana biomass immobilized within luffa sponge disc was successfully used as a metal biosorbent for the removal of Ni(II). It appears that MLIDs can be used as an effective biosorbent for efficient removal of Ni(II) or other metals from aqueous solution. SIGNIFICANCE AND IMPACT OF THE STUDY: MLIDs biosorption system was shown to have good biosorption properties with respect to Ni(II). Efficient metal removal ability of MLIDs, low cost and simplicity of the technique used for the preparation of MILDs could provide an attractive strategy for developing high-affinity biosorption system for heavy metal removal.  相似文献   

5.
Biosorption of each of the heavy metals, copper(II) and cobalt(II) by crab shell was investigated in this study. The biosorption capacities of crab shell for copper and cobalt were studied at different particle sizes (0.456-1.117 mm), biosorbent dosages (1-10 g/l), initial metal concentrations (500-2000 mg/l) and solution pH values (3.5-6) in batch mode. At optimum particle size (0.767 mm), biosorbent dosage (5 g/l) and initial solution pH (pH 6); crab shell recorded maximum copper and cobalt uptakes of 243.9 and 322.6 mg/g, respectively, according to Langmuir model. The kinetic data obtained at different initial metal concentrations indicated that biosorption rate was fast and most of the process was completed within 2h, followed by slow attainment of equilibrium. Pseudo-second order model fitted the data well with very high correlation coefficients (>0.998). The presence of light and heavy metal ions influenced the copper and cobalt uptake potential of crab shell. Among several eluting agents, EDTA (pH 3.5, in HCl) performed well and also caused low biosorbent damage. The biosorbent was successfully regenerated and reused for five cycles.  相似文献   

6.
Biosorption equilibrium and kinetics of Cd(2+) and Cu(2+) ions on wheat straw, Triticum aestivum, in an aqueous system were investigated. Among the models tested, namely the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, the biosorption equilibrium for both Cd(2+) and Cu(2+) was best described by the Langmuir model. The Langmuir biosorption capacity for Cd(2+) was about 27% higher than that for Cu(2+). It was also found that biosorption of Cd(2+) and Cu(2+) by wheat straw followed second-order kinetics. The equilibrium amount of metal ions adsorbed onto the wheat straw increased with increasing of pH from 4.0 to 7.0, and the effect was more pronounced for Cd(2+) than for Cu(2+). The equilibrium adsorbed amount also increased with the initial concentration of the metal ions, as expected. On the other hand, an increase of temperature from 25 to 30 degrees C only enhanced the biosorption of Cd(2+) and Cu(2+) slightly. The apparent temperature independence and the strong pH dependence of the amount of metal ions adsorbed along with moderate mean free energies of biosorption (between 8.0 and 12.9 kJ mol(-1)) altogether indicate that biosorption of Cd(2+) and Cu(2+) by wheat straw might follow a chemisorption mechanism.  相似文献   

7.
Competitive biosorption of Cd(II), Cr(III) and Ni(II) on unmodified shelled Moringa oleifera seeds (SMOS) present in ternary mixture were compared with the single metal solution. The extent of adsorption capacity of the ternary metal ions tested on unmodified SMOS was low (10-20%) as compared to single metal ions. SMOS removed the target metal ions in the selectivity order of Cd(II) > Cr(III) > Ni(II). Sorption equilibria, calculated from adsorption data, explained favorable performance of biosorption system. Regeneration of exhausted biomass was also attempted for several cycles with a view to restore the sorbent to its original state.  相似文献   

8.
The biosorption characteristics of Pb(II) and Cr(III) ions from aqueous solution using the lichen (Parmelina tiliaceae) biomass were investigated. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by P. tiliaceae biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of P. tiliaceae biomass for Pb(II) and Cr(III) ions was found to be 75.8 mg/g and 52.1mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol for Pb(II) biosorption and 10.5 kJ/mol for Cr(III) biosorption, indicating that the biosorption of both metal ions was taken place by chemical ion-exchange. The calculated thermodynamic parameters (delta G degrees , delta H degrees and delta S degrees ) showed that the biosorption of Pb(II) and Cr(III) ions onto P. tiliaceae biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

9.
Chitin and chitosan are naturally abundant biopolymers which are of interest to research concerning the sorption of metal ions since the amine and hydroxyl groups on their chemical structures act as chelation sites for metal ions. This study evaluates the removal of copper, chromium, and arsenic elements from chromated copper arsenate (CCA)-treated wood via biosorption by chitin and chitosan. Exposing CCA-treated sawdust to various amounts of chitin and chitosan for 1, 5, and 10 days enhanced removal of CCA components compared to remediation by deionized water only. Remediation with a solution containing 2.5 g chitin for 10 days removed 74% copper, 62% chromium, and 63% arsenic from treated sawdust. Remediation of treated sawdust samples using the same amount of chitosan as chitin resulted in 57% copper, 43% chromium, and 30% arsenic removal. The results suggest that chitin and chitosan have a potential to remove copper element from CCA-treated wood. Thus, these more abundant natural amino polysaccharides could be important in the remediation of waste wood treated with the newest formulations of organometallic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

10.
Cytochrome c oxidase catalyzes the reduction of oxygen to water with a concomitant conservation of energy in the form of a transmembrane proton gradient. The enzyme has a catalytic site consisting of a binuclear center of a copper ion and a heme group. The spectroscopic parameters of this center are unusual. The origin of broad electron paramagnetic resonance (EPR) signals in the oxidized state at rather low resonant field, the so-called g' = 12 signal, has been a matter of debate for over 30 years. We have studied the angular dependence of this resonance in both parallel and perpendicular mode X-band EPR in oriented multilayers containing cytochrome c oxidase to resolve the assignment. The "slow" form and compounds formed by the addition of formate and fluoride to the oxidized enzyme display these resonances, which result from transitions between states of an integer-spin multiplet arising from magnetic exchange coupling between the five unpaired electrons of high spin Fe(III) heme a(3) and the single unpaired electron of Cu(B). The first successful simulation of similar signals observed in both perpendicular and parallel mode X-band EPR spectra in frozen aqueous solution of the fluoride compound of the closely related enzyme, quinol oxidase or cytochrome bo(3), has been reported recently (Oganesyan et al., 1998, J. Am. Chem. Soc. 120:4232-4233). This suggested that the exchange interaction between the two metal ions of the binuclear center is very weak (|J| approximately 1 cm(-1)), with the axial zero-field splitting (D approximately 5 cm(-1)) of the high-spin heme dominating the form of the ground state. We show that this model accounts well for the angular dependences of the X-band EPR spectra in both perpendicular and parallel modes of oriented multilayers of cytochrome c oxidase derivatives and that the experimental results are inconsistent with earlier schemes that use exchange coupling parameters of several hundred wavenumbers.  相似文献   

11.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

12.
The removal of chromate anions (CrO(4)(2-)) from aqueous solution by a cationic surfactant-modified yeast was studied in a batch system. Cetyl trimethyl ammonium bromide (CTAB) was used for biomass modification; it substantially improved the biosorption efficiency. The influences of solution pH, CrO(4)(2-) anion concentrations and biomass concentration on the biosorption efficiency were investigated. The biosorption of chromate anions by modified yeast was strongly affected by pH. The optimum pH for biosorption of CrO(4)(2-) by modified yeast was 4.5-5.5. Zeta potential values of modified and unmodified yeast were determined at various pH values. Concentrations ranging from 5.2 to 208 mg/l Cr(VI) were tested and the biosorptive removal efficiency of the metal ions from aqueous solution was more than 99.5%. Freundlich and Langmuir isotherms were used to evaluate the data and the regression constants were determined.  相似文献   

13.
Seaweed Sargassum sp. biomass proved to be useful for the recovery of ionic copper from highly concentrated solutions simulating effluents from semiconductor production. In the case of solutions containing copper in the form of chloride, sulphate and nitrate salts, the best pH for the recovery of copper was 4.5. It was observed that copper biosorption from copper nitrate solutions was higher than the recovery of copper from copper chloride or sulphate solutions. The continuous system used was constituted of four column reactors filled with the biomass of Sargassum sp. and showed high operational stability. Biomass of Sargassum sp. in the reactors was gradually saturated from the bottom to the top of each column reactor. The biomass of Sargassum sp. in the first column was saturated first, followed by a gradual saturation of the remaining columns due to the pre-concentration caused by the biomass in the first column. The biomass of Sargassum in the bioreactors completely biosorbed the ionic copper contained in 63 L of copper sulphate solution, 72 L of copper chloride solution and 72 L of copper nitrate solution, all the solutions containing copper at 500 mg/L. Effluents produced after biosorption presented copper concentrations less than 0.5 mg/L.  相似文献   

14.
The aim of this article was to investigate the interactions of metal cations in aqueous solutions with the biomass of the freshwater macroalga Vaucheria sp. This problem is important when elaborating new applications of biosorption, e.g. the production of mineral feed additives for livestock from the biomass of algae enriched with microelement ions. Potentiometric titration was applied as a quick and cheap screening test to search for new efficient biosorbents. It revealed a variety of functional groups capable of cation exchange on the macroalgal surface, including carboxyl, phosphate, hydroxyl or amino groups. Fourier transform infrared spectroscopy on natural and chromium‐loaded Vaucheria sp. confirmed that carboxyl groups played a dominant role in the biosorption. The study also showed that Ca(II), Na(I), K(I), and Mg(II) ions were released from the biomass after biosorption of Cu(II), Mn(II), Zn(II), and Co(II) ions, indicating that ion exchange was a key mechanism in the biosorption of metal ions by Vaucheria sp. biomass. It was noticed that the mass of the microelement cations bound by the macroalga was proportional to the total mass of light metal ions [Na(I), K(I), Ca(II), and Mg(II)] released from the biomass.  相似文献   

15.
An Eulerian-Vlasov code is used to study the properties of a collisionless sheath with grazing incidence of the magnetic field. In the case where the ion gyroradius is large compared to the Debye length, the electrons, frozen by the magnetic field lines, have to move rapidly along the magnetic field B in their attempt to follow the ions gyrating perpendicular to B. Below a critical angle, the electrons moving parallel to B can no longer follow the gyrating ions and low-frequency oscillations appear in the system. Published in Russian in Fizika Plazmy, 2008, Vol. 34, No. 9, pp. 812–815. The text was submitted by the authors in English.  相似文献   

16.
Fungi such as Aspergillus niger and Mucor rouxii are capable of removing heavy metals from aqueous solutions. The role various functional groups play in the cell wall of M. rouxii in metal biosorption of lead, cadmium, nickel and zinc was investigated in this paper. The biomass was chemically treated to modify the functional carboxyl, amino and phosphate groups. These modifications were examined by means of infrared spectroscopy. It was found that an esterification of the carboxyl groups and phosphate and a methylation of the amine groups significantly decreased the biosorption of the heavy metals studied. Thus, the carboxylate, amine and phosphate groups were recognized as important in the biosorption of metal ions by M. rouxii biomass. The role the lipids fraction play was not significant. The study showed that Na, K, Ca and Mg ions were released from the biomass after biosorption of Pb, Cd, Ni and Zn, indicating that ion exchange was a key mechanism in the biosorption of metal ions by M. rouxii biomass.  相似文献   

17.
Olive oil waste as a biosorbent for heavy metals   总被引:1,自引:0,他引:1  
The sourcing of novel, inexpensive biowastes such as olive mill waste (OMW) from the two-decanter olive-oil-production system offers potential for the removal of metal ions by biosorption. OMW can be used in repeated regeneration cycles for the adsorption of heavy metals from aqueous solutions. The metal ions sequestered can be released in an acid solution until the concentration of these metal ions reaches a level where conventional methods can be used to provide economic metal recovery and potential revenue generation. The ability of this biomass to adsorb more than one metal ion from solution may increase its potential for application in the wastewater industry since the majority of industrial effluents contain more than one metallic species. Metal ion adsorption was found to increase with the speed of agitation and at an optimum pH value of between 4 and 7.  相似文献   

18.
A study is made of the structure of an accelerating layer with a closed Hall current and the geometry of an ion beam in an external magnetic field created by an arbitrary axisymmetric system of ring currents under conditions such that the Hall current can be ignored. It is shown that the ion trajectories are perpendicular to the magnetron cutoff surface for electrons and that the cathode plasma boundary coincides with a magnetic field line. A magnetic field configuration is found in which the cutoff surface is a plane surface perpendicular to the axis of the system. It is shown that, for a small ratio of the gyroradius of the electrons (in terms of the maximum energy acquired by them in the layer) to the characteristic size of the structure, such a configuration provides sufficient means to ensure the formation of slightly converging ion beams or those that are essentially parallel to the system axis.  相似文献   

19.
The biosorption of lead, copper and zinc ions on Rhizopus arrhizus has been studied for three single-component and two binary systems. The equilibrium data have been analysed using the Freundlich adsorption model. The characteristic parameters for the Freundlich adsorption model have been determined and the competition coefficients for the competitive biosorption of Pb(II)-Cu(II) at pH 4.0 and 5.0, and Pb(II)-Zn(II) at pH 5.0 have been calculated. For the individual single-component isotherms, lead has the highest biosorption capacity followed by copper, then zinc. The capacity of lead in the two binary systems is always significantly greater than those of the other metal ions, in agreement with the single-component data. Only a partial selectivity for copper ions has been obtained at pH 4.0. Received: 21 June 1999 / Accepted: 2 November 1999  相似文献   

20.
Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption–desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l−1 of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of ≈13 and 3 mg g−1, respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1 M HNO3 solution was 100% effective. After two consecutive sorption–desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号