首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

3.
4.
Imprinted genes in mammals are often located in clusters whose imprinting is subject to long range regulation by cis-acting sequences known as imprinting centers (ICs). The mechanisms by which these ICs exert their effects is unknown. The Prader-Willi syndrome IC (PWS-IC) on human chromosome 15 and mouse chromosome 7 regulates imprinted gene expression bidirectionally within an approximately 2-megabase region and shows CpG methylation and histone H3 Lys-9 methylation in somatic cells specific for the maternal chromosome. Here we show that histone H3 Lys-9 methylation of the PWS-IC is reduced in mouse embryonic stem (ES) cells lacking the G9a histone H3 Lys-9/Lys-27 methyltransferase and that maintenance of CpG methylation of the PWS-IC in mouse ES cells requires the function of G9a. We show by RNA fluorescence in situ hybridization (FISH) that expression of Snrpn, an imprinted gene regulated by the PWS-IC, is biallelic in G9a -/- ES cells, indicating loss of imprinting. By contrast, Dnmt1 -/- ES cells lack CpG methylation of the PWS-IC but have normal levels of H3 Lys-9 methylation of the PWS-IC and show normal monoallelic Snrpn expression. Our results demonstrate a role for histone methylation in the maintenance of parent-specific CpG methylation of imprinting regulatory regions and suggest a possible role of histone methylation in establishment of these CpG methylation patterns.  相似文献   

5.
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ∼3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ∼2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ∼750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

6.
Raca G  Buiting K  Das S 《Genetic testing》2004,8(4):387-394
The molecular basis of Angelman syndrome and Prader-Willi syndrome is well established, and genetic testing for these disorders is clinically available. Imprinting abnormalities account for up to 4% of patients with Angelman and Prader-Willi syndromes. Deletions of the imprinting center region are the molecular abnormality observed in a subset of Angelman and Prader-Willi syndrome cases with imprinting defects. Genetic testing of imprinting center deletions in patients with Angelman and Prader-Willi syndrome is not readily available. Such testing is important for the diagnostics of Angelman and Prader-Willi syndrome because it allows for more accurate diagnosis and recurrence risk prediction in families. Here we describe the development, validation, and implementation of a real time quantitative polymerase chain reaction (PCR)-based assay for imprinting center deletion detection in patients with Angelman and Prader-Willi syndrome, which we have incorporated into our genetic testing strategy for these disorders. To date we have tested, on a clinical basis, five patients with either Angelman or Prader-Willi syndrome in whom an imprinting center defect was implicated and found a deletion in one patient that was determined to be familial.  相似文献   

7.
8.
9.
10.
Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS.  相似文献   

11.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are caused by the loss of function of imprinted genes in proximal 15q. In approximately 2%-4% of patients, this loss of function is due to an imprinting defect. In some cases, the imprinting defect is the result of a parental imprint-switch failure caused by a microdeletion of the imprinting center (IC). Here we describe the molecular analysis of 13 PWS patients and 17 AS patients who have an imprinting defect but no IC deletion. Heteroduplex and partial sequence analysis did not reveal any point mutations of the known IC elements, either. Interestingly, all of these patients represent sporadic cases, and some share the paternal (PWS) or the maternal (AS) 15q11-q13 haplotype with an unaffected sib. In each of five PWS patients informative for the grandparental origin of the incorrectly imprinted chromosome region and four cases described elsewhere, the maternally imprinted paternal chromosome region was inherited from the paternal grandmother. This suggests that the grandmaternal imprint was not erased in the father's germ line. In seven informative AS patients reported here and in three previously reported patients, the paternally imprinted maternal chromosome region was inherited from either the maternal grandfather or the maternal grandmother. The latter finding is not compatible with an imprint-switch failure, but it suggests that a paternal imprint developed either in the maternal germ line or postzygotically. We conclude (1) that the incorrect imprint in non-IC-deletion cases is the result of a spontaneous prezygotic or postzygotic error, (2) that these cases have a low recurrence risk, and (3) that the paternal imprint may be the default imprint.  相似文献   

12.
The 2 Mb domain on chromosome 15q11-q13 that carries the imprinted genes involved in Prader-Willi (PWS) and Angelman (AS) syndromes is under the control of an imprinting center comprising two regulatory regions, the PWS-SRO located around the SNRPN promoter and the AS-SRO located 35 kb upstream. Here we describe the results of an analysis of the epigenetic features of these two sequences and their interaction. The AS-SRO is sensitive to DNase I, and packaged with acetylated histone H4 and methylated histone H3(K4) only on the maternal allele, and this imprinted epigenetic structure is maintained in dividing cells despite the absence of clearcut differential DNA methylation. Genetic analysis shows that the maternal AS-SRO is essential for setting up the DNA methylation state and closed chromatin structure of the neighboring PWS-SRO. In contrast, the PWS-SRO has no influence on the epigenetic features of the AS-SRO. These results suggest a stepwise, unidirectional program in which structural imprinting at the AS-SRO brings about allele-specific repression of the maternal PWS-SRO, thereby preventing regional activation of genes on this allele.  相似文献   

13.
14.
Hypopigmentation in the Prader-Willi syndrome.   总被引:4,自引:4,他引:4       下载免费PDF全文
Cutaneous and ocular pigmentation were evaluated in 29 individuals with the Prader-Willi syndrome (PWS). Criteria for hypopigmentation included the presence of type I or II skin, the lightest skin type in the family by history, and iris translucency on globe transillumination. On the basis of these criteria, 48% of the PWS individuals were hypopigmented. The presence of hypopigmentation correlated with a small interstitial deletion on the proximal long arm of chromosome 15; however, this deletion was also found in individuals who did not meet the full criteria for hypopigmentation. Hairbulb tyrosinase activity and glutathione content, as well as urine cysteinyldopa excretion, were low in PWS individuals with and without hypopigmentation and did not separate these two groups. We conclude that hypopigmentation is found in a significant proportion of individuals with PWS and that the hypopigmentation may be associated with a deletion of the long arm of chromosome 15. The mechanism for the hypopigmentation is unknown.  相似文献   

15.
16.
17.
18.
The Prader-Willi syndrome and the Angelman syndrome   总被引:1,自引:0,他引:1  
The Prader-Willi syndrome and the Angelman syndrome are characterised by a complex clinical and behavioural phenotype resulting from loss of paternal or maternal expression, respectively, of genes located on the human chromosome 15q11-13. Different molecular mechanisms leading to this imbalance have been identified, including microdeletions, intragenic mutations, uniparental disomy and imprinting centre defects. Low copy repeat gene clusters are known to flank the 15q11-13 microdeletion. They predispose to unequal crossing-over events resulting in the deletion. Involvement of multiple disease genes is strongly suspected and traditional positional cloning techniques as well as animal models are used to identify the involved genes. In this review we include the present state of art and a delineation of future approach to study the candidate genes in these two syndromes.  相似文献   

19.
Summary A family in which two first cousins were found to have the Prader-Willi syndrome was investigated cytogenetically. Although G-banding analysis of metaphase chromosomes failed to demonstrate abnormality, close analyses on the fine prometaphase bands by G-banding and the DA-DAPI bands by double stainings revealed a distinct chromosome abnormality in this family. A reciprocal translocation, rep(14:15)(q11.2;q13), was detected in three family members: the mother, the maternal grandmother, and a maternal uncle of the proband. And, the proband and one of the first cousins had an unbalanced translocation that was derived from their carrier parents. The karyotypes of the affected cousins were determined as 46,XY or XX,-15,+der(14),rcp(14;15)(q11.2;q13). Therefore, they were considered to have an identical cytogenetic abnormality: a partial trisomy of the 14pterq11.2 segment and a partial monosomy of the 15pterq13 segment. Detailed clinical features of the proband and his affected cousin are described, main features associated with the Prader-Willi syndrome having been observed in both cousins. These observations support a definite relationship between the Prader-Willi syndrome and chromosome 15.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号