首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angelman syndrome (AS) is characterized by severe mental retardation, absent speech, puppet-like movements, inappropriate laughter, epilepsy, and abnormal electroencephalogram. The majority of AS patients ( 65%) have a maternal deficiency within chromosomal region 15q11–q13, caused by maternal deletion or paternal uniparental disomy (UPD). Approximately 35% of AS patients exhibit neither detectable deletion nor UPD, but a subset of these patients have abnormal methylation at several loci in the 15q11–q13 interval. We describe here three patients with Angelman syndrome belonging to an extended inbred family. High resolution chromosome analysis combined with DNA analysis using 14 marker loci from the 15q11-q13 region failed to detect a deletion in any of the three patients. Paternal UPD of chromosome 15 was detected in one case, while the other two patients have abnormal methylation atD15S9, D15S63, andSNRPN. Although the three patients are distantly related, the chromosome 15q11-q13 haplotypes are different, suggesting that independent mutations gave rise to AS in this family.  相似文献   

2.
About 70% of patients with Prader-Willi syndrome (PWS) and Angelman syndrome (AS) have a common interstitial de novo microdeletion encompassing paternal (PWS) or maternal (AS) loci D15S9 to D15S12. Most of the non-deletion PWS patients and a small number of non-deletion AS patients have a maternal or paternal uniparental disomy (UPD)15, respectively. Other chromosome 15 rearrangements and a few smaller atypical deletions, some of the latter being associated with an abnormal methylation pattern, are rarely found. Molecular and fluorescence in situ hybridization (FISH) analysis have both been used to diagnose PWS and AS. Here, we have evaluated, in a typical routine cytogenetic laboratory setting, the efficiency of a diagnostic strategy that starts with a FISH deletion assay using Alu-PCR (polymerase chain reaction)-amplified D15S10-positive yeast artificial chromosome (YAC) 273A2. We performed FISH in 77 patients suspected of having PWS (n = 66) or AS (n = 11) and compared the results with those from classical cytogenetics and wherever possible with those from DNA analysis. A FISH deletion was found in 16/66 patients from the PWS group and in 3/11 patients from the AS group. One example of a centromere 15 co-hybridization performed in order to exclude cryptic translocations or inversions is given. Of the PWS patients, 14 fulfilled Holm’s criteria, but two did not. DNA analysis confirmed the commmon deletion in all patients screened by the D15S63 methylation test and in restriction fragment length polymorphism dosage blots. In 3/58 non-deletion patients, other chromosomal aberrations were found. Of the non-deleted group, 27 subjects (24 PWS, 3 AS) were tested molecularly, and three patients with an uniparental methylation pattern were found in the PWS group. The other 24/27 subjects had neither a FISH deletion nor uniparental methylation, but two had other cytogenetic aberrations. Given that cytogenetic analysis is indispensable in most patients, we find that the FISH deletion assay with YAC 273A2 is an efficient first step for stepwise diagnostic testing and mutation-type analysis of patients suspected of having PWS or AS. Received: 14 November 1995  相似文献   

3.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) result from the disturbance of imprinted gene expression within human chromosome 15q11–q13. Some cases of PWS and AS are caused by microdeletions near the SNRPN gene that disrupt a regulatory element termed the imprinting center (IC). The IC has two functional components; an element at the promoter of SNRPN involved in PWS (PWS-IC) and an element 35 kilobases (kb) upstream of SNRPN involved in AS (AS-IC). To further understand the function of the IC, we sought to create a mouse model for AS-IC mutations. We have generated two deletions at a location analogous to that of the human AS-IC. Neither deletion produced an imprinting defect as indicated by DNA methylation and gene expression analyses. These results indicate that no elements critical for AS-IC function in mouse reside within the 12.8-kb deleted region and suggest that the specific location of the AS-IC is not conserved between human and mouse. Camilynn I. Brannan was Deceased  相似文献   

4.
X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader?CWilli syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),?15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI.  相似文献   

5.
6.
Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS.  相似文献   

7.
Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that result from the loss of expression of imprinted genes in the paternal (PWS) or maternal (AS) 15q11-q13 chromosome. Diagnosis on a clinical basis is difficult in newborns and young infants; thus, a suitable molecular test capable of revealing chromosomal abnormalities is required. We used a variety of cytogenetic and molecular approaches, such as, chromosome G banding, fluorescent in situ hybridization, a DNA methylation test, and a set of chromosome 15 DNA polymorphisms to characterize a cohort of 27 PWS patients and 24 suspected AS patients. Molecular analysis enabled the reliable diagnosis of 14 PWS and 7 AS patients, and their classification into four groups: (A) 6 of these 14 PWS subjects (44 %) had deletions of paternal 15q11-q13; (B) 4 of the 7 AS patients had deletions of maternal 15q11-q13; (C) one PWS patient (8 %) had a maternal uniparental disomy (UPD) of chromosome 15; (D) the remaining reliably diagnoses of 7 PWS and 3 AS cases showed abnormal methylation patterns of 15q11-q13 chromosome, but none of the alterations shown by the above groups, although they may have harbored deletions undetected by the markers used. This study highlights the importance of using a combination of cytogenetic and molecular tests for a reliable diagnosis of PWS or AS, and for the identification of genetic alterations.  相似文献   

8.
Prader-Willi (PWS) and Angelman (AS) syndromes are clinically distinct neurodevelopmental genetic diseases with multiple phenotypic manifestations. They are one of the most common genetic syndromes caused by non-Mendelian inheritance in the form of genomic imprinting, and can be attributable to the loss of gene expression due to imprinting within the chromosomal region 15q11-q13. Clinical diagnosis of PWS and AS is challenging, and the use of molecular and cytomolecular studies is recommended to help in determining the diagnosis of these conditions. The methylation analysis is a sensible approach; however there are several techniques for this purpose, such as the methylation-sensitive polymerase chain reaction (MS-PCR). This study aims to optimize the MS-PCR assay for the diagnosis of potential PWS and AS patients using DNA modified by sodium bisulfite. We used the MS-PCR technique of PCR described by Kosaki et al. (1997) adapted with betaine. All different concentrations of betaine used to amplify the methylated and unmethylated chromosomal region 15q11-q13 on the gene SNRPN showed amplification results, which increased proportionally to the concentration of betaine. The methylation analysis is a technically robust and reproducible screening method for PWS and AS. The MS-PCR assures a faster, cheaper and more efficient method for the primary diagnosis of the SNRPN gene in cases with PWS and AS, and may detect all of the three associated genetic abnormalities: deletion, uniparental disomy or imprinting errors.  相似文献   

9.
The Angelman (AS) and Prader-Willi (PWS) syndromes are two clinically distinct disorders that are caused by a differential parental origin of chromosome 15q11-q13 deletions. Both also can result from uniparental disomy (the inheritance of both copies of chromosome 15 from only one parent). Loss of the paternal copy of 15q11-q13, whether by deletion or maternal uniparental disomy, leads to PWS, whereas a maternal deletion or paternal uniparental disomy leads to AS. The differential modification in expression of certain mammalian genes dependent upon parental origin is known as genomic imprinting, and AS and PWS represent the best examples of this phenomenon in humans. Although the molecular mechanisms of genomic imprinting are unknown, DNA methylation has been postulated to play a role in the imprinting process. Using restriction digests with the methyl-sensitive enzymes HpaII and HhaI and probing Southern blots with several genomic and cDNA probes, we have systematically scanned segments of 15q11-q13 for DNA methylation differences between patients with PWS (20 deletion, 20 uniparental disomy) and those with AS (26 deletion, 1 uniparental disomy). The highly evolutionarily conserved cDNA, DN34, identifies distinct differences in DNA methylation of the parental alleles at the D15S9 locus. Thus, DNA methylation may be used as a reliable, postnatal diagnostic tool in these syndromes. Furthermore, our findings demonstrate the first known epigenetic event, dependent on the sex of the parent, for a locus within 15q11-q13. We propose that expression of the gene detected by DN34 is regulated by genomic imprinting and, therefore, that it is a candidate gene for PWS and/or AS.  相似文献   

10.
Previously, 158 nuclear families with probands suspected of having either Prader Willi (PWS) or Angelman syndrome (AS) were analyzed with polymorphic DNA markers from the 15q11–13 region. These cases have been re-evaluated with the probe PW71 (D15S63), which detects parent-of-origin-specific alleles after digestion with a methylation-sensitive restriction enzyme (HpaII). Application of PW71 to DNA samples isolated from leucocytes, confirmed the deletions and uniparental disomies detected earlier by marker analysis, and resolved 50% of the previously uninformative (n=18) cases. PW71 and restriction fragment length polymorphism analysis indicated that, in all resolved cases, disomies of the 15q11–13 region were present. The use of PW71 increased the percentage of disomies detected in our PWS and AS patient groups. Almost 50% of our PWS patients and 17% of the AS patients showed a disomy of maternal or paternal origin, respectively. DNA of first trimester chorionic villi and of fibroblast cultures was not suitable for analysis with PW71 because of different methylation patterns. The application of PW71 is recommended for the diagnosis of the PWS and AS, with respect to DNA samples from blood.  相似文献   

11.
Prader-Willi syndrome (PWS) is a contiguous gene syndrome caused by the loss of function of genes situated within the 15q11-q13 region. The loss of function arises as a result of paternally derived mutations complemented by maternal imprinting. The molecular events underlying the disorder include interstitial deletions (70%), uniparental disomy (UPD) (25%), imprinting center defects (<5%), and rarely chromosomal translocations (<1%). The standard diagnosis of PWS is based on clinical observations and genetic investigations involving DNA methylation studies and fluorescence in situ hybridization (FISH) analysis. The absence of a paternal methylation pattern within 15q11 is sufficient for a diagnosis of PWS, and FISH analyses are used for the additional categorization of patients as either deletion or nondeletion. The main limitation of these investigations is that they neither determine the size of the molecular deletions nor permit detection of individuals with microdeletions in the PWS imprinting center that regulates imprinting in this region. We have designed and implemented a real-time PCR assay using genomic DNA and SYBR green I intercalating dye to determine the size of the chromosomal deletions in patients with PWS. This has been successfully performed on genomic DNA isolated from both peripheral blood leukocytes and buccal epithelial cells. Through this assay, the two common deletion classes in PWS were observed, and all results were 100% concordant with previous FISH assays performed on the same patients.  相似文献   

12.
The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. We have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, we have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. We propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region.  相似文献   

13.
14.
Angelman syndrome (AS) is associated with a loss of maternal genetic information, which typically occurs as a result of a deletion at 15q11-q13 or paternal uniparental disomy of chromosome 15. We report a patient with AS as a result of an unbalanced cryptic translocation whose breakpoint, at 15q11.2, falls within this region. The proband was diagnosed clinically as having Angelman syndrome, but without a detectable cytogenetic deletion, by using high-resolution G-banding. FISH detected a deletion of D15S11 (IR4-3R), with an intact GABRB3 locus. Subsequent studies of the proband's mother and sister detected a cryptic reciprocal translocation between chromosomes 14 and 15 with the breakpoint being between SNRPN and D15S10 (3- 21). The proband was found to have inherited an unbalanced form, being monosomic from 15pter through SNRPN and trisomic for 14pter to 14q11.2. DNA methylation studies showed that the proband had a paternal-only DNA methylation pattern at SNRPN, D15S63 (PW71), and ZNF127. The mother and unaffected sister, both having the balanced translocation, demonstrated normal DNA methylation patterns at all three loci. These data suggest that the gene for AS most likely lies proximal to D15S10, in contrast to the previously published position, although a less likely possibility is that the maternally inherited imprinting center acts in trans in the unaffected balanced translocation carrier sister.  相似文献   

15.
16.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct neurodevelopmental disorders with interrelated genetic mechanisms because genomic imprinting within the chromosome 15q11–13 region affects both the PWS and the AS locus. Methylation analysis is one method of distinguishing between the maternally and paternally inherited chromosome 15. Here we present clinical and molecular data on a large series of 258 referred patients, evaluated with methylation analysis: 115 with suspected PWS and 143 with suspected AS. In these patients, the clinical phenotype was graded into three groups: classical (group 1); not classical but possible (group 2); not classical and unlikely (group 3). For PWS, a fourth group consisted of hypotonic babies. DNA methylation analysis confirmed the diagnosis of PWS in 30 patients (26%) and AS in 28 patients (20%). For 21 PWS patients the mechanism was established: 15 had deletions, 4 had uniparental disomy (UPD) and 2 a presumed imprinting defect. Clinically all those with an abnormal methylation pattern had the classical phenotype and none of those with a normal methylation pattern had classical PWS. For 23 AS patients in whom a mechanism was established, 17 had a deletion, 3 had UPD and 3 had a presumed imprinting defect. There was greater clinical overlap in AS, with 26 classical AS patients having a normal methylation pattern while an abnormal methylation pattern was seen in one patient from group 2. In addition, there were a further 40 patients with a normal methylation pattern in whom AS was still a possible diagnosis. Our conclusion is that methylation analysis provides an excellent screening test for both syndromes, providing ∼99% diagnosis for PWS and for AS, a 75% diagnostic rate, supplemented for the remaining 25% with an essential basic starting point to further investigations. Received: 10 February 1998 / Accepted: 7 July 1998  相似文献   

17.
We have studied the inverted duplicated chromosomes 15 (inv dup(15)) from 11 individuals--7 with severe mental retardation and seizures, 3 with a normal phenotype, and 1 with Prader-Willi syndrome (PWS). Through a combination of FISH and quantitative DNA analyses, three different molecular sizes of inv dup(15) were identified. The smallest inv dup(15) was positive only for the centromeric locus D15Z1 (type 1); the next size was positive for D15Z1 and D15S18 (type 2); and the largest inv dup(15) was positive for two additional copies of loci extending from D15Z1 and D15S18 through D15S12 (type 3). Type 1 or type 2 was observed in the three normal individuals and the PWS patient. Type 3 was observed in all seven individuals with mental retardation and seizures but without PWS or Angelman Syndrome (AS). The PWS patient, in addition to being mosaic for a small inv dup(15), demonstrated at D15S63 a methylation pattern consistent with maternal uniparental inheritance of the normal chromosomes 15. The results from this study show (a) two additional copies of proximal 15q loci, D15S9 through D15S12, in mentally retarded patients with an inv dup(15) but without AS or PWS and (b) no additional copies of these loci in patients with a normal phenotype or with PWS.  相似文献   

18.
Here we describe the genetic studies performed in 53 patients with the suspected diagnosis of Prader-Willi syndrome (PWS). PWS is characterized by neonatal hypotonia, hypogonadism, delayed psychomotor development, hyperphagia, obesity, short stature, small hands and feet, learning disabilities, and obsessive-compulsive behavior. Through the methylation analysis of the SNRPN gene, microsatellite studies of loci mapped within and outside the PWS/AS region, and fluorescence in situ hybridization (FISH) study, we confirmed the diagnosis in 35 patients: 27 with a paternal deletion, and 8 with maternal uniparental disomy (UPD). The clinical comparisons between deleted and UPD patients indicated that there were no major phenotype differences, except for a lower birth length observed in the UPD children. Our sample was composed of more girls than boys; UPD patients were diagnosed earlier than the deleted cohort (2(10/12) s. 7(9/12) years); and, in the deleted group, the boys were diagnosed earlier than the girls (5(2/12) vs. 7(8/12) years, respectively).  相似文献   

19.
20.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic disorders caused by the loss of function of imprinted genes in the chromosomal region 15q11q13. An approximately 2 Mb region inside 15q11q13 is subject to genomic imprinting. As a consequence the maternal and paternal copies in this region are different in DNA methylation and gene expression. The most frequent genetic lesions in both disorders are an interstitial de novo deletion of the chromosomal region 15q11q13, uniparental disomy 15, an imprinting defect or, in the case of AS, a mutation of the UBE3A gene. Microdeletions in a small number of patients with PWS and AS with an imprinting defect have led to the identification of the chromosome 15 imprinting centre (IC) upstream of the SNURF-SNRPN gene, which acts in cis to regulate imprinting in the whole 15q imprinted domain. The IC consists of two critical elements: one in the more centromeric part which is deleted in patients with AS and which is thought to be responsible for the establishment of imprinting in the female germ line, and one in the more telomeric part which is deleted in patients with PWS and which is required to maintain the paternal imprint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号