首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although elevated expression and increased tyrosine phosphorylation of focal adhesion kinase (FAK) are crucial for tumor progression, the mechanism by which FAK promotes oncogenic transformation is unclear. We have therefore determined the role of FAK phosphorylation at tyrosine 861 in the oncogenic transformation of NIH3T3 fibroblasts. FAK phosphorylation at tyrosine 861 was increased in both constitutively H-Ras-transformed and H-Ras-inducible NIH3T3 cells, in parallel with cell transformation. However, H-Ras-inducible cells transfected with the nonphosphorylatable mutant FAK Y861F showed decreased migration/invasion, focus forming activity and anchorage-independent growth, compared with either wild-type or kinase-defective FAK. In contrast to unaltered FAK/Src activity, the association of FAK and p130(CAS) was decreased in FAK Y861F-transfected cells, and FAK phosphorylation at tyrosine 861 enhanced this association in vitro. Consistently, FAK Y861F-transfected cells were defective in activation of c-Jun NH(2)-terminal kinase and in expression of matrix metalloproteinase-9 during transformation. Taken together, these results strongly suggest that FAK phosphorylation at tyrosine 861 is crucial for H-Ras-induced transformation through regulation of the association of FAK with p130(CAS).  相似文献   

2.
The results presented here demonstrate that focal adhesion kinase (FAK) Tyr-861 is the predominant tyrosine phosphorylation site stimulated by hyperosmotic stress in a variety of cell types, including epithelial cell lines (ileum-derived IEC-18, colon-derived Caco2, and stomach-derived NCI-N87), FAK null fibroblasts re-expressing FAK, and Src family kinase triple null fibroblasts (SYF cells) in which c-Src has been restored (YF cells). We show that hyperosmotic stress-stimulated FAK phosphorylation in epithelial cells is inhibited by Src family kinase inhibitors PP2 and SU6656 and that it does not occur in SYF cells. Unexpectedly, hyperosmotic stress-induced phosphorylation of FAK at Tyr-397, Tyr-576, and most dramatically at Tyr-861 was completely insensitive to the F-actin-disrupting agents, latrunculin A and cytochalasin D. Finally, we show that in FAK null cells exposed to hyperosmotic stress or growth factor withdrawal, re-expression of wild type FAK restored cell survival, whereas re-expression of FAK mutated from tyrosine to phenylalanine at position 861 (FAKY861F) did not. Our results indicate that FAK Tyr-861 phosphorylation is required for mammalian cell survival of hyperosmotic stress. Furthermore, the results suggest that FAK is an upstream regulator (rather than downstream effector) of F-actin reorganization in response to hyperosmotic stress. We propose that FAK/c-Src bipartite enzyme is a sensor of cytoplasmic shrinkage, and that the phosphorylation on FAK Tyr-861 by Src and subsequent reorganization of F-actin can initiate an anti-apoptotic signaling pathway that protects cells from hyperosmotic stress.  相似文献   

3.
Nitric oxide (NO) can participate in cellular signaling. In this study, monoclonal antibodies against proteins from the growth factor-mediated signalling pathway were used to identify a set of 126-, 56-, 43-, and 40-kDa proteins phosphorylated on tyrosine at NO stimulation of murine fibroblasts overexpressing the human epidermal growth factor receptor. The band corresponding to the 126-kDa protein was FAK. The 56-kDa protein was Src kinase, and the doublet 43- and 40-kDa protein corresponded to the extracellular-regulated MAP kinases (ERK1/ERK2). The effects of NO on focal adhesion complexes were also investigated. FAK was constitutively associated with the adapter protein Grb2 in HER14 cells. Treatment of the cells with the NO donor, sodium nitroprusside, or with EGF did not change this association. We also detected a basal constitutive association of Src kinase with FAK in HER14 cells. In NO-treated cells, this association was stimulated. The doublet 43/40-kDa protein was identical to the ERK1/ERK2 MAP kinases. NO stimulated an increase in ERK1/ERK2 phosphorylation as assessed by a shift in its eletrophoretic mobility and by increased phosphotyrosine immunoreactivity. Furthermore, NO-dependent activation of ERK1/ERK2 depended on the intracellular redox status. Inhibition of glutathione synthesis was necessary to promote activation of the kinases.  相似文献   

4.
We have investigated tyrosine phosphorylation of cellular proteins at different cell densities. A tyrosine-phosphorylated protein of 120 kDa was detected when cells were plated sparsely. The phosphorylation level of the protein gradually declined as the cells were plated at higher densities or when the sparsely plated cells approached confluence. This density-dependent phosphorylation was also associated with cell attachment since it disappeared when the cells were detached from plates or when the cells were cultured in suspension. Immunoblotting and immunoprecipitation analyses with specific antibodies revealed that the 120-kDa protein corresponded to the focal adhesion kinase (FAK) and the protein level of FAK was not altered at different cell densities. In vitro kinase assays demonstrated that the kinase activity of FAK decreased with increasing cell densities in parallel with its dephosphorylation. Cell density also affects localization of FAK associated with rearrangement of actin stress fibers. At low cell densities, FAK and actin stress fiber are distributed around the periphery of cells while they are dispersed over the ventral surface in high-density cells. Finally, the density-regulated tyrosine phosphorylation and localization of FAK appeared to be mediated by an insoluble factor produced by high-density cells.  相似文献   

5.
We investigatedthe role of the integrin-associated proteins focal adhesion kinase(FAK) and paxillin as mediators of mechanosensitive signal transductionin tracheal smooth muscle. In muscle strips contracted isometricallywith ACh, we observed higher levels of tyrosine phosphorylation of FAKand paxillin at the optimal muscle length(Lo) than atshorter muscle lengths of 0.5 or 0.75 Lo. Paxillinphosphorylation was also length sensitive in muscles activated byK+ depolarization and adjustedrapidly to changes in muscle length imposed after contractileactivation by either ACh or K+depolarization. Ca2+ depletion didnot affect the length sensitivity of paxillin and FAK phosphorylationin muscles activated with ACh, indicating that the mechanotransductionprocess can be mediated by aCa2+-independent pathway. SinceCa2+-depleted muscles do notgenerate significant active tension, this suggests that themechanotransduction mechanism is sensitive to muscle length rather thantension. We conclude that FAK and paxillin participate in anintegrin-mediated mechanotransduction process in tracheal smoothmuscle. We propose that this pathway may initiate alterations in smoothmuscle cell structure and contractility via the remodeling of actinfilaments and/or via the mechanosensitive regulation ofsignaling molecules involved in contractile protein activation.

  相似文献   

6.
The focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) is critical for recruitment of FAK to focal adhesions and contains tyrosine 926, which, when phosphorylated, binds the SH2 domain of Grb2. Structural studies have shown that the FAT domain is a four-helix bundle that exists as a monomer and a dimer due to domain swapping of helix 1. Here, we report the NMR solution structure of the avian FAT domain, which is similar in overall structure to the X-ray crystal structures of monomeric forms of the FAT domain, except that loop 1 is longer and less structured in solution. Residues in this region undergo temperature-dependent exchange broadening and sample aberrant phi and psi angles, which suggests that this region samples multiple conformations. We have also identified a mutant that dimerizes approximately 8 fold more than WT FAT domain and exhibits increased phosphorylation of tyrosine 926 both in vitro and in vivo.  相似文献   

7.
Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer.  相似文献   

8.
Syndecan-4 modulates focal adhesion kinase phosphorylation   总被引:7,自引:0,他引:7  
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation.  相似文献   

9.
The non-receptor tyrosine kinase FAK plays a key role at sites of cellular adhesion. It is subject to regulatory tyrosine phosphorylation in response to a variety of stimuli, including integrin engagement after attachment to extracellular matrix, oncogene activation, and growth factor stimulation. Here we use an antibody that specifically recognizes the phosphorylated form of the putative FAK autophosphorylation site, Tyr(397). We demonstrate that FAK phosphorylation induced by integrins during focal adhesion assembly differs from that induced by activation of a temperature-sensitive v-Src, which is associated with focal adhesion turnover and transformation. Specifically, although v-Src induces tyrosine phosphorylation of FAK, there is no detectable phosphorylation of Tyr(397). Moreover, activation of v-Src results in a net decrease in fibronectin-stimulated phosphorylation of Tyr(397), suggesting possible antagonism between v-Src and integrin-induced phosphorylation. Our mutational analysis further indicates that the binding of v-Src to Tyr(397) of FAK in its phosphorylated form, which is normally mediated, at least in part, by the SH2 domain of Src, is not essential for v-Src-induced cell transformation. We conclude that different stimuli can induce phosphorylation of FAK on distinct tyrosine residues, linking specific phosphorylation events to ensuing biological responses.  相似文献   

10.
We have recently shown that changes in tyrosine phosphorylation of a 130-kDa protein(s) (pp130) may be involved in integrin signaling (Kornberg, L., Earp, H.S., Turner, C., Prokop, and Juliano, R. L. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 8392-8396). One component of the pp130 protein complex reacts with an antibody generated against p125fak, which is a focal contact-associated tyrosine kinase (Schaller, M.D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., and Parsons, J. T. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 5192-5196). Both antibody-mediated integrin clustering and adhesion of KB cells to fibronectin leads to increased tyrosine phosphorylation of p125fak. The phosphorylation of p125fak is coincident with adhesion of cells to fibronectin and is maximal prior to cell spreading. Tyrosine phosphorylation of p125fak is induced when KB cells are allowed to adhere to fibronectin, collagen type IV, or laminin, but is not induced on polylysine. When KB cells are subjected to indirect immunofluorescence microscopy, p125fak colocalizes with talin in focal contacts. These data provide additional evidence that tyrosine kinases are involved in integrin signaling.  相似文献   

11.
We investigated mechanisms for inducing focal adhesion kinase (FAK) tyrosine phosphorylation and their ability to trigger MAP kinase signaling using transmembrane chimeras that localize FAK and its mutants to the plasma membrane. We tested whether tyrosine phosphorylation was triggered by FAK transmembrane aggregation using antibodies against the chimeric extracellular domain. Experimental clustering of chimeras containing integrin beta cytoplasmic domains or FAK induced FAK tyrosine phosphorylation and trans-phosphorylation of endogenous FAK, as well as strong ERK activation. Next, we examined whether lower-order molecular proximity, namely dimerization, could regulate FAK tyrosine phosphorylation. We found that even relatively low-affinity FAK dimerization (K(d)=3.9 x 10(-5) M), in either of two different orientations, could induce FAK tyrosine phosphorylation. However, this cytoplasmic FAK dimerization could not induce MAP kinase activation or trans-phosphorylation of endogenous FAK. We conclude that dimerization of FAK is sufficient to induce its tyrosine phosphorylation, but that higher-order molecular proximity (clustering) at the cell membrane is apparently needed for additional biochemical events. This study identifies a proximity mechanism for regulating the initiation of FAK-mediated biochemical signaling.  相似文献   

12.
Focal adhesion kinase (FAK) and paxillin are focal adhesion-associated, phosphotyrosine-containing proteins that physically interact. A previous study has demonstrated that paxillin contains two binding sites for FAK. We have further characterized these two binding sites and have demonstrated that the binding affinity of the carboxyl-terminal domain of FAK is the same for each of the two binding sites. The presence of both binding sites increases the affinity for FAK by 5-10-fold. A conserved paxillin sequence called the LD motif has been implicated in FAK binding. We show that mutations in the LD motifs in both FAK-binding sites are required to dramatically impair FAK binding in vitro. A paxillin mutant containing point mutations in both FAK-binding sites was characterized. The mutant exhibited reduced levels of phosphotyrosine relative to wild type paxillin in subconfluent cells growing in culture, following cell adhesion to fibronectin and in src-transformed fibroblasts. These results suggest that paxillin must bind FAK for maximal phosphorylation in response to cell adhesion and that FAK may function to direct tyrosine phosphorylation of paxillin in the process of transformation by the src oncogene.  相似文献   

13.
In the present study, we examined regulation of activated focal adhesion kinase localization in focal adhesions. By using focal adhesion kinase fused to an inert transmembrane anchor, we found that the focal contact targeting region within focal adhesion kinase was preserved in the membrane-targeted fusion protein. However, upon tyrosine phosphorylation, full-length focal adhesion kinase became excluded from focal adhesions. This negative regulation of localization could be abolished by mutating key amino acid residues of focal adhesion kinase shown previously to be involved in adhesion-mediated signal transduction. Hyper-phosphorylation of endogenous focal adhesion kinase induced by pervanadate resulted in a similar reduction of localization at focal adhesions. We also show here that Src family kinases are essential for the phosphorylation-dependent exclusion of focal adhesion kinase from focal adhesions. We propose here a molecular model for the tyrosine phosphorylation-dependent regulation of focal adhesion kinase organization involving Src kinases and an inhibitory phosphorylation of the C-terminal (Tyr-925) tyrosine residue.  相似文献   

14.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs via tyrosine phosphorylation at specific residues. Although several tyrosine phosphorylation events have been linked to FAK activation and downstream signal transduction, the function of FAK phosphorylation at Tyr(407) was previously unknown. Here, we show for the first time that phosphorylation of FAK Tyr(407) increases during serum starvation, contact inhibition, and cell cycle arrest, all conditions under which activating FAK Tyr(397) phosphorylation decreases. Transfection of NIH3T3 cells with a phosphorylation-mimicking FAK 407E mutant decreased autophosphorylation at Tyr(397) and inhibited both FAK kinase activity in vitro and FAK-mediated functions such as cell adhesion, spreading, proliferation, and migration. The opposite effects were observed in cells transfected with nonphosphorylatable mutant FAK 407F. Taken together, these data suggest the novel concept that FAK Tyr(407) phosphorylation negatively regulates the enzymatic and biological activities of FAK.  相似文献   

15.
Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.  相似文献   

16.
Cellular remodeling during progression of dilation involves focal adhesion contact reorganization. However, the signaling mechanisms and structural consequences leading to impaired cardiomyocyte adhesion are poorly defined. These events were studied in tropomodulin-overexpressing transgenic mice that develop dilated cardiomyopathy associated with chronic elevation of intracellular calcium. Analysis of tropomodulin-overexpressing transgenic hearts by immunoblot and confocal microscopy revealed activation and redistribution of signaling molecules known to regulate adhesion. Calcium-dependent pyk2/related focal adhesion tyrosine kinase (RAFTK) showed changes in expression and phosphorylation state, similar to changes observed for a related downstream target molecule of pyk2/RAFTK termed focal adhesion kinase. Paxillin, the target substrate molecule for focal adhesion kinase phosphorylation, was redistributed in tropomodulin-overexpressing transgenic hearts with enhanced paxillin phosphorylation and cleavage. Certain aspects of the in vivo signaling phenotype including increased paxillin phosphorylation could be recapitulated in vitro using neonatal rat cardiomyocytes infected with recombinant adenovirus to overexpress tropomodulin. In addition, increasing intracellular calcium levels with ionomycin induced pyk2/RAFTK phosphorylation, and adenovirally mediated expression of wild-type pyk2/RAFTK resulted in increased phospho-pyk2/RAFTK levels and concomitant paxillin phosphorylation. Collectively, these results delineate a cardiomyocyte signaling pathway associated with dilation that has potential relevance for cardiac remodeling, focal adhesion reorganization, and loss of contractility.  相似文献   

17.
Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale.  相似文献   

18.
Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of focal adhesion kinase (FAK). DCA decreased adhesion of HCA-7 cells to the substratum and induced dephosphorylation of FAK at tyrosine-576/577 (Tyr-576/577) and Tyr-925. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by DCA stimulation. Interestingly, we found that c-Src was constitutively associated with FAK and DCA actually activated Src, despite no change in FAK-397 and an inhibition of FAK-576 phosphorylation. DCA concomitantly and significantly increased association of tyrosine phosphatase ShP2 with FAK. Incubation of immunoprecipitated FAK, in vitro, with glutathione-S-transferase-ShP2 fusion protein resulted in tyrosine dephosphorylation of FAK in a concentration-dependent manner. Antisense oligodeoxynucleotides directed against ShP2 decreased ShP2 protein levels and attenuated DCA-induced FAK dephosphorylation. Inhibition of FAK by adenoviral-mediated overexpression of FAK-related nonkinase and gene silencing of Shp2 both abolished DCA's effect on cell adhesion, thus providing a possible mechanism for inside-out signaling by DCA in colon cancer cells. Our results suggest that DCA differentially regulates focal adhesion complexes and that tyrosine phosphatase ShP2 has a role in DCA signaling.  相似文献   

19.
The calcium-dependent tyrosine kinase (CADTK), also known as Pyk2/RAFTK/CAKbeta/FAK2, is a cytoskeleton-associated tyrosine kinase. We compared CADTK regulation with that of the highly homologous focal adhesion tyrosine kinase (FAK). First, we generated site-specific CADTK mutants. Mutation of Tyr402 eliminated autophosphorylation and significantly decreased kinase activity. Mutation of Tyr881, a putative Src kinase phosphorylation site predicted to bind Grb2, had little effect on CADTK regulation. Src family tyrosine kinases resulted in CADTK tyrosine phosphorylation even when co-expressed with the Tyr402/Tyr881 double mutant, suggesting that Src/Fyn etc. phosphorylate additional tyrosine residues. Interestingly, CADTK tyrosine-phosphorylated FAK when both were transiently expressed, but FAK did not phosphorylate CADTK. Biochemical experiments confirmed direct CADTK phosphorylation of FAK. This phosphorylation utilized tyrosine residues other than Tyr397, Tyr925, or Tyr576/Tyr577, suggesting that new SH2-binding sites might be created by CADTK-dependent FAK phosphorylation. Last, expression of the CADTK carboxyl terminus (CRNK) abolished CADTK but not FAK autophosphorylation. In contrast, FAK carboxyl terminus overexpression inhibited both FAK and CADTK autophosphorylation, suggesting that a FAK-dependent cytoskeletal function may be necessary for CADTK activation. Thus, CADTK and FAK, which both bind to some, but not necessarily the same, cytoskeletal elements, may be involved in coordinate regulation of cytoskeletal structure and signaling.  相似文献   

20.
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号