共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases 总被引:14,自引:0,他引:14
J E Eriksson D Toivola J A Meriluoto H Karaki Y G Han D Hartshorne 《Biochemical and biophysical research communications》1990,173(3):1347-1353
The cyclic peptide hepatotoxins microcystin-LR, 7-desmethyl-microcystin-RR and nodularin are potent inhibitors of the protein phosphatases type 1 and type 2A. Their potency of inhibition resembles calyculin-A and to a lesser extent okadaic acid. These hepatotoxins increase the overall level of protein phosphorylation in hepatocytes. Evidence is presented to indicate that in hepatocytes the morphological changes and effects on the cytoskeleton are due to phosphatase inhibition. The potency of these compounds in inducing hepatocyte deformation is similar to their potency in inhibiting phosphatase activity. These results suggest that the hepatotoxicity of these peptides is related to inhibition of phosphatases, and further indicate the importance of the protein phosphorylation in maintenance of structural and homeostatic integrity in these cells. 相似文献
2.
J. Mandl K. Mészáros F. Antoni Z. Spolarics T. Garzó 《Molecular and cellular biochemistry》1982,46(1):25-30
Summary The inhibition of RNA synthesis of isolated mouse liver parenchymal cells caused by 10 mM D-galactosamine was reversible, while the inhibition of protein synthesis remained unaltered after the removal of galactosamine. 10–5 M epinephrine and 10–7 M glucagon have been shown to decrease aminoglycogen formation and thus to reduce the inhibitory effect of galactosamine on protein synthesis (11). However, these hormones did not decrease the inhibition of RNA synthesis. 10 mM D-galactosamine did not effect the nucleoside and amino acid incorporation of isolated non-parenchymal mouse liver cells. The predominant role of aminoglycogen in the inhibition of protein synthesis in galactosamine induced liver injury is discussed. 相似文献
3.
《Comparative biochemistry and physiology. A, Comparative physiology》1984,77(3):425-430
- 1.1. Long lasting synaptic inhibitions (LLI) were recorded in the silent cells LPL1 and RPL1 of Helix pomatia.
- 2.2. During LLI the excitability of the cell was strongly reduced.
- 3.3. The membrane conductance changes during LLI were characterized using the voltage-clamp technique.
- 4.4. LLI in the silent cell LPL1 is mediated by a synaptically induced inhibition of the voltage-dependent inward Ca2+ -current.
4.
Protein kinase C (PKC) and its proteolysis-derived protein kinase independent of Ca2+ and phospholipids (PKM), were purified from rat brain. By using histone H1 and protamine as substrates, we assayed the effect of several inhibitors of PKC and PKM. The inhibition turned out to be dependent on both the nature of the kinase and the type of substrate assayed. These results may help to interpret the different responses elicited by PKC inhibitors in vivo. 相似文献
5.
10 mM D-galactosamine enhibited protein synthesis (1 h incubation time) by 67% in isolated mouse liver cells. Counteracting uridylate deficiency induced by D-galactosamine by preventive administration of 20 mM uridine did not decrease the extent of protein synthesis inhibition. 20 mM D-galactose reverted the inhibition of protein synthesis by D-galactosamine. 10(-5) M epinephrine and 10(-7) M glucagon decreased the incorporation of D-galactosamine into glycogen to 38% and 26% of the control value, respectively, after a 35 min incubation and reduced the inhibition of protein synthesis by D-galactosamine effectively. Experimental evidence supports the view that aminoglycogen formed after D-galactosamine treatment is responsible for the inhibition of protein synthesis. 相似文献
6.
S R Wagle R Stermann K Decker 《Biochemical and biophysical research communications》1976,71(2):622-628
Effect of galactosamine on glycogenolysis was studied in isolated hepatocytes. It was found that addition of galactosamine strongly inhibited glycogenolysis in normal hepatocytes. Galactosamine-inhibited glycogenolysis was not stimulated by epinephrine or glucagon. This inhibition was specific as no such inhibition was observed with galactose, 2-deoxy-glucose or glucosamine. The glucagon-stimulated cyclic AMP formation in galactosamine-treated hepatocytes was the same as in normal cells; Glc-1-P and Glc-6-P did not accumulate nor was lactate formation enhanced. The glucose production by hepatocytes from regenerating liver was only slightly inhibited by galactosamine and glucagon addition stimulated glycogenolysis in the presence of the amino sugar. 相似文献
7.
8.
Protein N-glycosylation plays an important role in protein function. Yet, at present, few computational methods are available for the prediction of this protein modification. This prompted our development of a support vector machine (SVM)-based method for this task, as well as a partial least squares (PLS) regression based prediction method for comparison. A functional domain feature space was used to create SVM and PLS models, which achieved accuracies of 83.91% and 79.89%, respectively, as evaluated by a leave-one-out cross-validation. Subsequently, SVM and PLS models were developed based on functional domain and protein secretion information, which yielded accuracies of 89.13% and 86%, respectively. This analysis demonstrates that the protein functional domain and secretion information are both efficient predictors of N-glycosylation. 相似文献
9.
10.
11.
Specific inhibition of GPI-anchored protein function by homing and self-association of specific GPI anchors 下载免费PDF全文
The functional specificity conferred by glycophosphatidylinositol (GPI) anchors on certain membrane proteins may arise from their occupancy of specific membrane microdomains. We show that membrane proteins with noninteractive external domains attached to the same carcinoembryonic antigen (CEA) GPI anchor, but not to unrelated neural cell adhesion molecule GPI anchors, colocalize on the cell surface, confirming that the GPI anchor mediates association with specific membrane domains and providing a mechanism for specific signaling. This directed targeting was exploited by coexpressing an external domain-defective protein with a functional protein, both with the CEA GPI anchor. The result was a complete loss of signaling capabilities (through integrin-ECM interaction) and cellular effect (differentiation blockage) of the active protein, which involved an alteration of the size of the microdomains occupied by the active protein. This work clarifies how the GPI anchor can determine protein function, while offering a novel method for its modulation. 相似文献
12.
In the course of long lasting bradycardia in elderly patients, cardiac output will regularly diminish, circulation will slow down and signs of cerebral insufficiency may become manifest. The changes of cerebral circulation and its regulation were studied in 10 patients 61-74 years of age, with restricted cerebral regulatory capacity, suffering from permanent bradycardia. Cerebral blood flow was measured by using the venous isotope dilution technique by double punctures of the internal jugular vein. Hemispheric cerebral blood flow, cerebral O2 consumption and cerebral vascular resistance were determined during bradycardia and after termination of bradycardia by pacemaker. During long lasting bradycardia, cerebral blood flow and cerebral O2 consumption decreased, cerebral vascular resistance was elevated. After pacemaker implantation, cerebral blood flow and O2 consumption increased and cerebral vascular resistance decreased, approaching the normal value. The symptoms of cerebral insufficiency disappeared on improvement of the cerebral circulation. 相似文献
13.
Scheper W Thaminy S Kais S Stagljar I Römisch K 《The Journal of biological chemistry》2003,278(39):37998-38003
Secretory proteins are translocated across the endoplasmic reticulum (ER) membrane through a channel formed by three proteins, namely Sec61p, Sbh1p, and Sss1p (Johnson, A. E., and van Waes, M. A. (1999) Annu. Rev. Cell Dev. Biol. 15, 799-842). Sec61p and Sss1p are essential for translocation (Esnault, Y., Blondel, M. O., Deshaies, R. J., Schekman, R., and Kepes, F. (1993) EMBO J. 12, 4083-4093). Sec61p is a polytopic membrane protein that lines the protein translocation channel. The role of Sss1p is unknown. During import into the ER through the Sec61p channel, many proteins are N-glycosylated before translocation is completed. In addition, both the Sec61 channel and oligosaccharyl transferase (OST) copurify with ribosomes from rough ER, suggesting that OST is located in close proximity to the Sec61 channel (Gorlich, D., Prehn, S., Hartmann, E., Kalies, K.-U., and Rapoport, T. A. (1992) Cell 71, 489-503 and Wang, L., and Dobberstein, B. (1999) FEBS Lett. 457, 316-322). Here, we demonstrate a direct interaction between Sss1p and a subunit of OST, Wbp1p, using the split-ubiquitin system and co-immunoprecipitation. We generated mutants in the cytoplasmic domain of Sss1p that disturb the interaction with OST and are viable but display a translocation defect specific for proteins with glycosylation acceptor sites. Our data suggest that Sss1p coordinates translocation across the ER membrane and N-linked glycosylation of secretory proteins. 相似文献
14.
Albers JJ Day JR Wolfbauer G Kennedy H Vuletic S Cheung MC 《Biochimica et biophysica acta》2011,1814(7):908-911
The plasma phospholipid transfer protein (PLTP) plays a key role in lipid and lipoprotein metabolism. It has six potential N-glycosylation sites. To study the impact of these sites on PLTP secretion and activity, six variants containing serine to alanine point mutations were prepared by site-directed mutagenesis and expressed in Chinese hamster ovary Flp-In cells. The apparent size of each of the six PLTP mutants was slightly less than that of wild type by Western blot, indicating that all six sites are glycosylated or utilized. The size of the carbohydrate at each N-glycosylation site ranged from 3.14 to 4.2kDa. The effect of site-specific N-glycosylation removal on PLTP secretion varied from a modest enhancement (15% and 60%), or essentially no effect, to a reduction in secretion (8%, 14% and 32%). Removal of N-glycosylation at any one of the six glycosylation sites resulted in a significant 35-78% decrease in PLTP activity, and a significant 29-80% decrease in PLTP specific activity compared to wild type. These data indicate that although no single N-linked carbohydrate chain is a requirement for secretion or activity, the removal of the carbohydrate chains had a quantitative impact on cellular secretion of PLTP and its phospholipid transfer activity. 相似文献
15.
In A7r5 smooth muscle cells, vasopressin stimulates release of Ca2+ from intracellular stores and Ca2+ entry, and it inhibits adenylyl cyclase (AC) activity. Inhibition of AC is prevented by inhibition of phospholipase C or when the increase in cytosolic [Ca2+] is prevented by the Ca2+ buffer, BAPTA. It is unaffected by pertussis toxin, inhibition of protein kinase C, or L-type Ca2+ channels or by removal of extracellular Ca2+. The independence of extracellular Ca2+ occurs despite inhibition of AC by vasopressin persisting for at least 15 min, whereas the cytosolic [Ca2+] returns to its basal level within 1-2 min in Ca2+-free medium. Although capacitative Ca2+ entry (CCE), activated by emptying stores with thapsigargin, inhibits AC, Ca2+ entry via CCE or L-type Ca2+ channels activated by vasopressin is ineffective. Temporally separating vasopressin-evoked Ca2+ release from the assessment of AC activity revealed that the transient Ca2+ signal resulting from Ca2+ mobilization causes a long lasting inhibition of AC. By contrast, inhibition of AC by thapsigargin-evoked CCE reverses rapidly after removal of extracellular Ca2+. Inhibition of AC by vasopressin is prevented by inhibition of Ca2+-calmodulin-dependent protein kinase II. We conclude that persistent inhibition of AC (probably AC-3) by vasopressin is mediated by inositol trisphosphate-evoked Ca2+ release causing activation of Ca2+-calmodulin-dependent protein kinase II. Our results establish that an important interaction between two ubiquitous signaling pathways is tuned selectively to Ca2+ release via inositol trisphosphate receptors and that the interaction transduces a transient Ca2+ signal into a long lasting inhibition of AC. 相似文献
16.
The glycosylation state of the glycosyl-phosphatidylinositol (GPI) anchored cellular prion protein (PrPC) can influence the formation of the disease form of the protein responsible for the neurodegenerative spongiform encephalopathies. We have investigated the role of membrane topology in the N-glycosylation of PrP by expressing a C-terminal transmembrane anchored form, PrP-CTM, an N-terminal transmembrane anchored form, PrP-NTM, a double-anchored form, PrP-DA, and a truncated form, PrPDeltaGPI, in human neuroblastoma SH-SY5Y cells. Wild-type PrP, PrP- CTM and PrP-DA were membrane anchored and present on the cell surface as glycosylated forms. In contrast, PrP-NTM, although membrane anchored and localized at the cell surface, was not N-glycosylated. PrPDeltaGPI was secreted from the cells into the medium in a hydrophilic form that was unglycosylated. The 4-fold slower rate at which PrPDeltaGPI was trafficked through the cell compared with wild-type PrP was due to the absence of the GPI anchor not the lack of N-glycans. Retention of PrPDeltaGPI in the endoplasmic reticulum did not lead to its glycosylation. These results indicate that C-terminal membrane anchorage is required for N-glycosylation of PrP. 相似文献
17.
18.
Summary Chromatin from myeloma cells RPC 5 and ABPC 22, and from spleen and liver cells of immunized rats and mice, and mice bearing tumours, was fractionated into three parts: 0.35 M NaCl-soluble, 2 M NaCl-soluble and residual. The residual fraction from myeloma cells differed from that of immunized spleen cells, described previously as containing unique sequences (5), in that it has higher protein and DNA levels, lower DNase II sensitivity and lower template activity. 相似文献
19.
20.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2020,1864(7):129580
TRPM8 member of the TRP superfamily of membrane proteins participates to various cellular processes ranging from Ca2+ uptake and cold sensation to cellular proliferation and migration. TRPM8 is a large tetrameric protein with more than 70% of its residues located in the cytoplasm. TRPM8 is N-glycosylated, with a single site per subunit. This work focuses on the N-glycosylation of TRPM8 channel that was previously studied by our group in relation to proliferation and migration of tumoral cells. Here, experimental data performed with deglycosylating agents assess that the sole glycosylation site contains complex glycans with a molecular weight of 2.5 kDa. The glycosylation state of TRPM8 in cells untreated and treated with a deglycosylating agent was addressed with Terahertz (THz) spectroscopy. Results show a clear difference between cells comprising glycosylated and deglycosylated TRPM8, the first presenting an increased THz absorption. Human TRPM8 was modelled using as templates the available TRPM8 and other TRPM channels structures. Glycosylations were modelled by considering two glycan structures with molecular weight close to the experiment: shorter and branched at the first sugar unit (glc1) and longer and unbranched (glc2). Simulation of THz spectra based on the molecular dynamics of unglycosylated and the two glycosylated TRPM8 models in lipid membrane and solvation box showed that glycan structure strongly influences the THz spectrum of the channel and of other components from the simulation system. Only spectra of TRPM8 with glc1 glycans were in agreement with the experiment, leading to the validation of glc1 glycan structure. 相似文献