首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
2.
G proteins (Galphabetagamma) are essential signaling molecules, which dissociate into Galpha and Gbetagamma upon activation by heptahelical membrane receptors. We have identified the betagamma subunit complex of the photoreceptor-specific G protein, transducin (T), as a target of the ubiquitin-proteasome pathway. Ubiquitylated species of the transducin gamma-subunit (Tgamma) but not the alpha- or beta-subunits were assembled de novo in bovine photoreceptor preparations. In addition, Tgamma was exclusively ubiquitylated when Tbetagamma was dissociated from Talpha. Ubiquitylation of Tbetagamma on Tgamma was selectively catalyzed by human ubiquitin-conjugating enzymes UbcH5 and UbcH7 and was coincident with degradation of the entire Tbetagamma subunit complex in vitro by a mechanism requiring ATP and the proteasome. We also show that Tbetagamma association with phosducin, a photoreceptor-specific protein of unknown physiological function, blocks Tbetagamma ubiquitylation and subsequent degradation. Phosphorylation of phosducin by Ca(2+)/calmodulin-dependent protein kinase II, which inhibits phosducin-Tbetagamma complex formation, completely restored Tbetagamma ubiquitylation and degradation. We conclude that Tbetagamma is a substrate of the ubiquitin-proteasome pathway and suggest that phosducin serves to protect Tbetagamma following the light-dependent dissociation of Talphabetagamma.  相似文献   

3.
Farnesylation of the gamma-subunit of the retinal G-protein, transducin (Talpha/Tbetagamma), is indispensable for light-initiated signaling in photoreceptor cells. However, the farnesyl-mediated molecular interactions important for signaling are not well understood. To explore this issue, we created a functional Tbetagamma analogue in which the farnesyl group was replaced with a (3-azidophenoxy)geranyl (POG) group, a novel farnesyl analogue with a distal photoreactive azido group. In the presence of lipid membranes and/or Talpha-GDP, UV irradiation of POG-modified Tbetagamma (POG-Tbetagamma) invariably yielded a cross-linked product Tgamma-Tbeta, reflecting a constitutive interaction of the Tgamma C-terminal lipid with Tbeta. In addition to the Tgamma-Tbeta adduct, a Tgamma-Talpha cross-link was detected in the aqueous fraction. Reconstitution of POG-Tbetagamma with Talpha and light-activated rhodopsin (Rh) in photoreceptor membranes resulted in cross-linking of Tgamma with a glycerophospholipid, indicating molecular interaction of the farnesyl group with cellular membranes. The Tgamma-phospholipid cross-link was observed only in the presence of both Talpha-GDP and Rh, and was abolished by the addition of GTPgammaS or by replacing Rh with opsin. These findings suggest a transient farnesyl-membrane interaction occurs only in a signaling state formed in a transducin-Rh ternary complex. On the other hand, UV irradiation of POG-Tbetagamma in a soluble complex with phosducin, a negative regulator of G-protein, yielded a Tgamma-phosducin adduct in addition to the Tgamma-Tbeta cross-link. These results illustrate that, rather than being a static membrane anchor, the farnesyl moiety plays an active role in the dynamics of protein-protein and protein-membrane interactions at defined steps in the signal transduction process.  相似文献   

4.
In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin and microtubule cytoskeleton and the light dependent distribution of signaling molecules were subsequently analyzed by light and electron microscopy. The application of cytoskeletal drugs differentially affected the cytoskeleton in photoreceptor compartments. During dark adaptation the depolymerization of microtubules as well as actin filaments disrupted the translocation of arrestin and transducin in rod photoreceptor cells. During light adaptation only the delivery of arrestin within the outer segment was impaired after destabilization of microtubules. Movements of transducin and arrestin required intact cytoskeletal elements in dark adapting cells. However, diffusion might be sufficient for the fast molecular movements observed as cells adapt to light. These findings indicate that different molecular translocation mechanisms are responsible for the dark and light associated translocations of arrestin and transducin in rod photoreceptor cells.  相似文献   

5.
It has been shown by affinity chromatography on calmodulin-sepharose that transducin, a G protein of bovine retinal rod outer segments interacts with Ca(2+)-calmodulin. This result assumes that the main part of calmodulin in dark retinal rod outer segments is associated with transducin. It has been suggested that photoactivation of retinal rods induces changes in intracellular calmodulin concentration, which may be one of the steps involved in the light adaptation of photoreceptor.  相似文献   

6.
The role of mevalonate in the control of DNA synthesis during the cell cycle has been studied and has lead to the detection of isoprenylated proteins. These proteins are modified by a polyisoprenoid (farnesyl or geranylgeranyl) moiety via a thioether linkage. This modification is required for the following steps of the post-translational maturation of these proteins: proteolysis of the last three C-terminal amino-acids and carboxymethylation of the Cysteine-COOH. The isoprenylation could play a role in the membrane localisation of these proteins. Farnesylated proteins present a C-terminal CAAX domain. Moreover, the farnesylation is required for their biological activity independently of the membrane localization (Prelamine A, p21ras(Val 12)). Among geranylgeranyl proteins, two types of C-terminal sequences have been found: one with the motif CAAX, the other with the motif CC or CXC. In the last type, both Cysteines are geranylgeranylated. The hydrophobicity of the geranylgeranyl moiety leads to the membrane attachment, without any specificity. Moreover, geranylgeranylation as well as farnesylation seem important for protein-protein interactions. Among the identified isoprenylated proteins, the lamins, gamma-subunits of G proteins and the numerous (if not all) members of the Ras superfamily were characterized. The exact role of isoprenylation is still uncertain but it seems to affect the membrane localization and the protein-protein interactions.  相似文献   

7.
Evidence suggests that caveolins, 21-24 kDa cholesterol-binding proteins that generally reside in specialized detergent-resistant membrane microdomains, act as signaling scaffolds. Detergent-resistant membranes isolated from rod outer segments (ROS) have been previously shown to contain the photoreceptor G-protein, transducin. In this report we show, by subcellular fractionation, that caveolin-1 is an authentic component of purified ROS. We demonstrate that caveolin-1 in ROS almost exclusively resides in low-buoyant-density, cholesterol-rich, detergent-resistant membranes that can be disrupted by cholesterol depletion using methyl-beta-cyclodextrin (MCD). Cholesterol depletion was also observed to extract a pool of transducin alpha (Talpha) from ROS membranes. Immunoprecipitation with anti-caveolin-1 revealed the association of Talpha in the absence of Tbetagamma. Treatment of ROS with MCD resulted in a 2-fold decrease in recovery of Talpha in anti-caveolin-1 immunoprecipitates. This interaction was also completely disrupted when ROS were exposed to light in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), a nonhydrolyzable GTP analogue. In addition, caveolin-1/Talpha association in the immune complex was disrupted by a peptide based on the primary sequence of the caveolin-1 scaffolding domain. Finally, we confirm the colocalization of caveolin-1 and Talpha in photoreceptors by immunofluorescence microscopy. These results strongly suggest that the association between Talpha and caveolin-1 occurs in cholesterol-rich, detergent-resistant membranes and is likely to be dependent upon the activation state of Talpha.  相似文献   

8.
Affinity chromatography on calmodulin Sepharose showed that transducin, the G protein of bovine retinal rod outer segments, interacts with the Ca2+-calmodulin complex. This may mean that in the dark, rod outer segment calmodulin is largely in the bound state. It was assumed that photoactivation of rods induces a change in the calmodulin concentration in the cytoplasm of rod outer segments and this may be one of the processes leading to light adaptation of the photoreceptor.  相似文献   

9.
Epidemiological studies demonstrate a relationship between statin [3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor] usage and reduced risk of developing Alzheimer's disease. To determine whether statins affect neuronal development, we treated cultured rat hippocampal neurons with pravastatin. After 4-48 h of treatment, pravastatin significantly increased the number of neurites produced by each cell and caused a corresponding increase in levels of the membrane phospholipid phosphatidylcholine. Pravastatin treatment also significantly increased neurite length and branching but did not affect cellular cholesterol levels. Co-incubation with mevalonate, but not cholesterol, abolished the stimulatory effect of pravastatin on neurite outgrowth. Treatment of neurons with isoprenoids also abolished the effect of pravastatin on neurite growth, suggesting that pravastatin may stimulate neuritogenesis by preventing isoprenylation of signaling molecules such as the Rho family of small GTPases. A specific inhibitor of geranylgeranylation, but not farnesylation, mimicked the stimulatory effect of pravastatin on neuritogenesis. Pravastatin treatment significantly decreased levels of membrane-associated RhoA. These data suggest that pravastatin treatment increases neurite outgrowth and may do so via inhibiting the activity of geranylgeranylated proteins such as RhoA.  相似文献   

10.
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.  相似文献   

11.
The mammalian visual system relies upon light detection by outer-retinal rod/cone photoreceptors and melanopsin-expressing retinal ganglion cells. Gnat1(-/-);Cnga3(-/-);Opn4(-/-) mice lack critical elements of each of these photoreceptive mechanisms via targeted disruption of genes encoding rod α transducin (Gnat1); the cone-specific α3 cyclic nucleotide gated channel subunit (Cnga3); and melanopsin (Opn4). Although assumed blind, we show here that these mice retain sufficiently widespread retinal photoreception to drive a reproducible flash electroretinogram (ERG). The threshold sensitivity of this ERG is similar to that of cone-based responses, however it is lost under light adapted conditions. Its spectral efficiency is consistent with that of rod opsin, but not cone opsins or melanopsin, indicating that it originates with light absorption by the rod pigment. The TKO light response survives intravitreal injection of U73122 (a phospholipase C antagonist), but is inhibited by a missense mutation of cone α transducin (Gnat2(cpfl3)), suggesting Gnat2-dependence. Visual responses in TKO mice extend beyond the retina to encompass the lateral margins of the lateral geniculate nucleus and components of the visual cortex. Our data thus suggest that a Gnat1-independent phototransduction mechanism downstream of rod opsin can support relatively widespread responses in the mammalian visual system. This anomalous rod opsin-based vision should be considered in experiments relying upon Gnat1 knockout to silence rod phototransduction.  相似文献   

12.
R N Lolley  R H Lee 《FASEB journal》1990,4(12):3001-3008
A single photon can be detected by a rod photoreceptor cell. The absorption of light by rhodopsin triggers a cascade of reactions that amplifies the photon signal and results in ion channel closure with hyperpolarization of the rod photoreceptor cell. Light-induced conformational changes in rhodopsin facilitate the binding of a guanosine nucleotide-binding protein, transducin, which then undergoes a GTP-GDP exchange reaction and dissociation of the transducin complex. A subunit of transducin then activates a phosphodiesterase complex that hydrolyzes cyclic GMP. In darkness, cyclic GMP binds to cation channels of the photoreceptor plasma membrane, maintaining them in an open configuration. The light-induced reduction in cyclic GMP concentration dissociates the bound cyclic GMP, resulting in channel closure and hyperpolarization. Down-regulation of the cascade involves other proteins that block the interaction of transducin with rhodopsin and another protein that may interfere with transducin recycling. Cone photoreceptors possess a light-activated cascade that follows the rod format, but it is composed of proteins that are homologous to those of rod photoreceptors. Phototransduction in invertebrate photoreceptors uses rhodopsin to activate a cascade that uses phosphoinositides and calcium ion to regulate membrane polarization.  相似文献   

13.
Detergent-resistant membrane microdomains in the plasma membrane, known as lipid rafts, have been implicated in various cellular processes. We report here that a low-density Triton X-100-insoluble membrane (detergent-resistant membrane; DRM) fraction is present in bovine rod photoreceptor outer segments (ROS). In dark-adapted ROS, transducin and most of cGMP-phosphodiesterase (PDE) were detergent-soluble. When ROS membranes were exposed to light, however, a large portion of transducin localized in the DRM fraction. Furthermore, on addition of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) to light-bleached ROS, transducin became detergent-soluble again. PDE was not recruited to the DRM fraction after light stimulus alone, but simultaneous stimulation by light and GTPgammaS induced a massive translocation of all PDE subunits to the DRM. A cholesterol-removing reagent, methyl-beta-cyclodextrin, selectively but partially solubilized PDE from the DRM, suggesting that cholesterol contributes, at least in part, to the association of PDE with the DRM. By contrast, transducin was not extracted by the depletion of cholesterol. These data suggest that transducin and PDE are likely to perform their functions in phototransduction by changing their localization between two distinct lipid phases, rafts and surrounding fluid membrane, on disc membranes in an activation-dependent manner.  相似文献   

14.
The signaling state metarhodopsin II of the visual pigment rhodopsin decays to the apoprotein opsin and all-trans retinal, which are then regenerated to rhodopsin by the visual cycle. Opsin is known to have at neutral pH only a small residual constitutive activity toward its G protein transducin, which is thought to play a considerable role in light adaptation (bleaching desensitization). In this study we show with Fourier-transform infrared spectroscopy that after metarhodopsin II decay, opsin exists in two conformational states that are in a pH-dependent equilibrium at 30 degrees C with a pK of 4.1 in the presence of hydroxylamine scavenging the endogenous all-trans retinal. Despite the lack of the native agonist in its binding pocket, the low pH opsin conformation is very similar to that of metarhodopsin II and is likewise stabilized by peptides derived from rhodopsin's cognate G protein, transducin. The high pH form, on the other hand, has some conformational similarity to the inactive metarhodopsin I state. We therefore conclude that the opsin apoprotein displays intrinsic conformational states that are merely modulated by bound all-trans retinal.  相似文献   

15.
To determine the effect of protein isoprenylation with farnesyl vs geranylgeranyl groups on membrane association in vivo, COS cells were transfected with cDNAs encoding the wild-type G-protein alpha i1 (WT) subunit, the soluble nonmyristoylated G-protein alpha i1 glycine to alanine mutant (GA), a double mutant in which the carboxy-terminal residues CGLF of GA were mutated to CVLS (GA-CVLS), and a double mutant in which the carboxy terminus of GA was mutated to CALL (GA-CALL). As opposed to the WT and GA proteins, the GA-CVLS and GA-CALL proteins were not pertussis toxin substrates nor were they recognized by antibodies that recognize the nonmutated alpha i1 carboxy terminus. Only the GA-CVLS and GA-CALL proteins incorporated [3H]mevalonate in the form of a farnesyl and a geranylgeranyl moiety, respectively. Subcellular localization, as assessed by immunoblotting and immunoprecipitation, revealed that the WT protein localizes almost exclusively to the membrane fraction, whereas the GA, GA-CVLS, and GA-CALL proteins localize predominantly to the soluble fraction. The soluble GA-CVLS and GA-CALL proteins were not carboxyl methylated, but the small amount localized to the membrane was partially carboxyl methylated. These results indicate that neither farnesylation nor geranylgeranylation is sufficient alone to lead to membrane association.  相似文献   

16.
Kono M  Goletz PW  Crouch RK 《Biochemistry》2008,47(28):7567-7571
Rhodopsin is the photosensitive pigment in the rod photoreceptor cell. Upon absorption of a photon, the covalently bound 11- cis-retinal isomerizes to the all- trans form, enabling rhodopsin to activate transducin, its G protein. All -trans-retinal is then released from the protein and reduced to all -trans-retinol. It is subsequently transported to the retinal pigment epithelium where it is converted to 11- cis-retinol and oxidized to 11- cis-retinal before it is transported back to the photoreceptor to regenerate rhodopsin and complete the visual cycle. In this study, we have measured the effects of all -trans- and 11- cis-retinals and -retinols on the opsin's ability to activate transducin to ascertain their potentials for activating the signaling cascade. Only 11- cis-retinal acts as an inverse agonist to the opsin. All -trans-retinal, all -trans-retinol, and 11- cis-retinol are all agonists with all -trans-retinal being the most potent agonist and all -trans-retinol being the least potent. Taken as a whole, our study is consistent with the hypothesis that the steps in the visual cycle are optimized such that the rod can serve as a highly sensitive dim light receptor. All -trans-retinal is immediately reduced in the photoreceptor to prevent back reactions and to weaken its effectiveness as an agonist before it is transported out of the cell; oxidation of 11- cis-retinol occurs in the retinal pigment epithelium and not the rod photoreceptor cell because 11- cis-retinol can act as an agonist and activate the signaling cascade if it were to bind an opsin, effectively adapting the cell to light.  相似文献   

17.
The aim of the present paper is to evaluate the modulation of phosphatidate phosphohydrolase (PAPase) and diacylglyceride lipase (DGL) activities in bovine rod outer segment (ROS) under dark and light conditions and to evaluate the role of transducin (T) in this phenomenon. In dark-adapted ROS membranes exposed to light, PAPase activity is inhibited by 20% with respect to the activity found under dark conditions. To determine whether the retinal G protein, T, participates in the regulation of PAPase activity in these membranes, the effects of GTPgammaS and GDPbetaS on enzyme activity were examined. Under dark conditions in the presence of GTPgammaS, which stabilizes T in its active form (Talpha + Tbetagamma), enzyme activity was inhibited and approached control values under light conditions. GDPbetaS, on the other hand, which stabilizes the inactive state of T (Talphabetagamma), stimulated PAPase activity by 36% with respect to control light conditions. ADP-ribosylation by cholera and pertussis toxin was also studied. In ADP-rybosilated ROS membranes with pertussis toxin under dark conditions, PAPase activity was 36% higher than the activity found under control light conditions. ADP-ribosylation by CTx, on the other hand, inhibited PAPase activity by 22%, with respect to dark control conditions, mimicking light effect. The effects of GTPgammaS and GDPbetaS and conditions of ADP-ribosylation by PTx and CTx on DGL activity were similar to those of PAPase activities. Based on NEM sensitivity we have also demonstrated that the PAPase present in ROS is the PAP 2 isoform. Our findings therefore suggest that light inhibition of PAP 2 in ROS is a transducin-mediated mechanism.  相似文献   

18.
Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.  相似文献   

19.
Visual excitation in cones is thought to involve a cone-specific G protein (cone transducin) that transduces the light signal detected by the cone visual pigment into an increase in the enzymatic activity of a cGMP phosphodiesterase. In the preceding paper, we have shown that the G beta 3 isoform of G proteins is specifically localized in bovine cone photoreceptors and proposed that it might be a component of cone transducin. We reported here the purification from bovine retinal extract of a cone-specific T beta 3 gamma complex (where T is transducin), which is composed of a G beta 3 subunit and an immunochemically distinct G gamma subunit. Our purification of this complex is based on a two-stage procedure; the first stage consists of a series of column chromatographies that yield a mixture of purified T beta gamma substantially enriched in T beta 3 gamma, and the second stage involves the removal of all of the rod-specific T beta 1 gamma from the mixture using an affinity column of immobilized monoclonal antibodies directed against the rod T gamma subunit of transducin. Using this procedure, we were able to obtain sufficient amounts of T beta 1 gamma and T beta 3 gamma to begin a comparative study of their properties. We showed that T beta 3 gamma is distinguishable from T beta 1 gamma by isoelectric focusing under nondenaturing conditions. The G beta 3 polypeptide of T beta 3 gamma also migrates slightly slower than the G beta 1 polypeptide of T beta 1 gamma on denaturing polyacrylamide gels. Analysis of the interactions of T beta 3 gamma with other retinal proteins indicated that it has a lower affinity for the T alpha subunit of rod transducin but appears to complex with a phosducin-like protein. The differences in the intrinsic biochemical properties of T beta 3 gamma as compared to T beta 1 gamma may partially account for the lower light sensitivity of cones.  相似文献   

20.
Activation of phototransduction in the compound eye of Drosophila is mediated by a heterotrimeric G protein that couples to the effector enzyme phospholipase Cbeta. The gamma subunit of this G protein (Ggammae) as well as gamma subunits of vertebrate transducins contain a carboxyl-terminal CAAX motif (C, cysteine; A, aliphatic amino acid; X, any amino acid) with a consensus sequence for protein farnesylation. To examine the function of Ggammae farnesylation, we mutated the farnesylation site and overexpressed the mutated Ggammae in Drosophila. Mass spectrometry of overexpressed Ggammae subunits revealed that nonmutated Ggammae is modified by farnesylation, whereas the mutated Ggammae is not farnesylated. In the transgenic flies, mutated Ggammae forms a dimeric complex with Gbetae, with the consequence that the fraction of non-membrane-bound Gbetagamma is increased. Thus, farnesylation of Ggammae facilitates the membrane attachment of the Gbetagamma complex. We also expressed human Ggammarod in Drosophila photoreceptors. Despite similarities in the primary structure between the transducin gamma subunit and Drosophila Ggammae, we observed no interaction of human Ggammarod with Drosophila Gbetae. This finding indicates that human Ggammarod and Drosophila Ggammae provide different interfaces for the interaction with Gbeta subunits. Electroretinogram recordings revealed a significant loss of light sensitivity in eyes of transgenic flies that express mutated Ggammae. This loss in light sensitivity reveals that post-translational farnesylation is a critical step for the formation of membrane-associated Galphabetagamma required for transmitting light activation from rhodopsin to phospholipase Cbeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号