首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmid pJP4 enables Alcaligenes eutrophus JMP134 to degrade 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (TFD). Plasmid pRO101 is a derivative of pJP4 obtained by insertion of Tn1721 into a nonessential region of pJP4. Plasmid pRO101 was transferred by conjugation to several Pseudomonas strains and to A. eutrophus AEO106, a cured isolate of JMP134. AEO106(pRO101) and some Pseudomonas transconjugants grew on TFD. Transconjugants with a chromosomally encoded phenol hydroxylase also degraded phenoxyacetic acid (PAA) in the presence of an inducer of the TFD pathway, namely, TFD or 3-chlorobenzoate. A mutant of one such phenol-degrading strain, Pseudomonas putida PPO300(pRO101), grew on PAA as the sole carbon source in the absence of inducer. This isolate carried a mutant plasmid, designated pRO103, derived from pRO101 through the deletion of a 3.9-kilobase DNA fragment. Plasmid pRO103 constitutively expressed the TFD pathway, and this allowed the metabolism of PAA in the absence of the inducer, TFD. Complementation of pRO103 in trans by a DNA fragment corresponding to the fragment deleted in pRO101 indicates that a negative control-regulatory gene (tfdR) is located on the BamHI E fragment of pRO101. Other subcloning experiments resulted in the cloning of the tfdA monooxygenase gene on a 3.5-kilobase fragment derived from pRO101. This subclone, in the absence of other pRO101 DNA, constitutively expressed the tfdA gene and allowed PPO300 to grow on PAA. Preliminary evidence suggests that the monooxygenase activity encoded by this DNA fragment is feedback-inhibited by phenols.  相似文献   

2.
The broad host-range IncP-1 plasmids RP4 and RK2 were transferred by conjugation from Escherichia coli to Alcaligenes eutrophus H16. Among the transconjugants selected on media containing tetracycline, a considerable number did not express kanamycin resistance. By comparing restriction patterns of plasmids isolated from a large number of transconjugants a variety of different deletion derivatives were found. All of these possess more or less extended deletions always including parts of the tra 1-region. The plasmids RP4 and RK2, once established in A. eutrophus H16 showed a high stability and it can be concluded that deletion formation is connected with the conjugation process. Evidence is given that degradation of DNA entering an A. eutrophus recipient cell during the conjugative transfer process may be involved in deletion formation. Furthermore, the finding of a small deletion derivative of RP4 lacking the transacting replication function trfB and the entire kil-kor-system may allow the assumption that these gene functions are not essential for replication and maintenance of RP4 in A. eutrophus hosts.  相似文献   

3.
构建了含大肠杆菌磷酸果糖激酶(EC 2.7.1.11)基因pfkA的重组质粒pSDK1,利用大肠杆菌pfk缺陷株筛选含目的基因的重组质粒,通过接合转移的方式将其导入氧化硫硫杆菌TtZ2中,接合转移频率达2.6×10-6。重组质粒在TtZ2中有较好的稳定性,在无选择压力条件下传代50次基本保持稳定(重组质粒保留68%以上)。酶活性测定、SDSPAGE及RTPCR结果表明,pfkA基因在氧化硫硫杆菌中得到表达,但其表达水平低于大肠杆菌。葡萄糖可促进含pSDK1的氧化硫硫杆菌TtZ2的生长,而对照菌株的生长则未受明显影响,说明重组菌可部分利用葡萄糖作为碳源生长。  相似文献   

4.
Alcaligenes eutrophus strain CH34, which was isolated as a bacterium resistant to cobalt, zinc, and cadmium ions, shares with A. eutrophus strain H16 the ability to grow lithoautotrophically on molecular hydrogen, to form a cytoplasmic NAD-reducing and a membrane-bound hydrogenase, and most metabolic attributes; however, it does not grow on fructose. Strain CH34 contains two plasmids, pMOL28 (163 kilobases) specifying nickel, mercury, and cobalt resistance and pMOL30 (238 kilobases) specifying zinc, cadmium, mercury, and cobalt resistance. The plasmids are self-transmissible in homologous matings, but at low frequencies. The transfer frequency was strongly increased with IncP1 plasmids RP4 and pUZ8 as helper plasmids. The phenotypes of the wild type, cured strains, and transconjugants are characterized by the following MICs (Micromolar) in strains with the indicated phenotypes: Nic+, 2.5; Nic-, 0.6; Cob+A, 5.0; Cob+B, 20.0; Cob-, less than 0.07; Zin+, 12.0; Zin-, 0.6; Cad+, 2.5; and Cad-, 0.6. Plasmid-free cells of strain CH34 are still able to grow lithoautotrophically and to form both hydrogenases, indicating that the hydrogenase genes are located on the chromosome, in contrast to the Hox structural genes of strain H16, which are located on the megaplasmid pHG1 (450 kilobases).  相似文献   

5.
The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), which was previously derived from A. eutrophus JMP134 by curing of the 2,4-D-degradative plasmid pJP4, and JMP228 carrying pBH501aE (a plasmid derived from pJP4 by deletion of a large part of the tfdA gene which encodes the first step in the mineralization of 2,4-D). By using agricultural soil that had been treated with 2,4-D for several years, transconjugants were obtained with both recipients. However, when untreated control soil was used, no transconjugants were isolated. The various transconjugants had plasmids with seven different EcoRI restriction patterns. The corresponding plasmids are designated pEMT1 to pEMT7. Unlike pJP4, pEMT1 appeared not to be an IncP1 plasmid, but all the others (pEMT2 to pEMT7) belong to the IncP1 group. Hybridization with individual probes for the tfdA to tfdF genes of pJP4 demonstrated that all plasmids showed high degrees of homology to the tfdA gene. Only pEMT1 showed a high degree of homology to tfdB, tfdC, tfdD, tfdE, and tfdF, while the others showed only moderate degrees of homology to tfdB and low degrees of homology to tfdC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The modular pathway for the metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) encoded on plasmid pJP4 of Alcaligenes eutrophus JMP134 appears to be an example in which two genes, tfdA and tfdB, have been recruited during the evolution of a catabolic pathway. The products of these genes act to convert 2,4-D to a chloro-substituted catechol that can be further metabolized by enzymes of a modified ortho-cleavage pathway encoded by tfdCDEF. Given that modified ortho-cleavage pathways are comparatively common and widely distributed among bacteria, we sought to determine if microbial populations in soil carry tfdA on plasmid vectors that lack tfdCDEF or tfdB. To capture such plasmids from soil populations, we used a recipient strain of A. eutrophus that was rifampin resistant and carried a derivative of plasmid pJP4 (called pBH501aE) in which the tfdA had been deleted. Upon mating with mixed bacterial populations from soil treated with 2,4-D, transconjugants that were resistant to rifampin yet able to grow on 2,4-D were obtained. Among the transconjugants obtained were clones that contained a ca. 75-kb plasmid, pEMT8. Bacterial hosts that carried this plasmid in addition to pBH501aE metabolized 2,4-D, whereas strains with only pEMT8 did not. Southern hybridization showed that pEMT8 encoded a gene with a low level of similarity to the tfdA gene from plasmid pJP4. Using oligonucleotide primers based on known tfdA sequences, we amplified a 330-bp fragment of the gene and determined that it was 77% similar to the tfdA gene of plasmid pJP4 and 94% similar to tfdA from Burkholderia sp. strain RASC. Plasmid pEMT8 lacked genes that exhibited significant levels of homology to tfdB and tfdCDEF. Moreover, cell extracts from A. eutrophus(pEMT8) cultures did not exhibit TfdB, TfdC, TfdD, and TfdE activities, whereas cell extracts from A. eutrophus(pEMT8)(pBH501aE) cultures did. These data suggest that pEMT8 encodes only tfdA and that this gene can effectively complement the tfdA deletion mutation of pBH501aE.  相似文献   

7.
Phage t was isolated from sewage from Pretoria. It formed plaques only on Escherichia coli and Salmonella typhimurium strains that carried plasmids belonging to incompatibility group T. Five of six group T plasmids permitted visible lysis of R+ host strains. There was no visible lysis of E. coli J53-2 or S. typhimurium LT2trpA8 carrying the T plasmid Rts1 although the strains supported phage growth as indicated by at least a 10-fold increase in phage titre. The latter strains transferred the plasmid at high frequency to E. coli strain CSH2 and the resulting transconjugants plated the phage. Proteus mirabilis strain PM5006(R402) failed to support phage growth although it transferred the plasmid and concomitant phage sensitivity to E. coli J53-2. The phage was hexagonal in outline, RNA-containing, resistant to chloroform and adsorbed to the shafts of pili determined by T plasmids.  相似文献   

8.
Regulation of capsular biosynthesis (rcs) genes, encoding the ability to induce the production of a colanic acid polysaccharide capsule, were transferred to Escherichia coli by conjugation with Klebsiella pneumoniae (aerogenes) of capsular serotype K36. Transfer was mediated by a 58.4-MDa conjugative plasmid of incompatibility group IncM, which carried a copy of Tn7 (specifying resistance to trimethoprim and streptomycin) together with determinants for several further resistances. This plasmid did not carry the rcs genes itself, but mediated the conjugative recA-dependent transfer of part of the Klebsiella chromosome to E. coli. Once resident in E. coli, the rcs gene(s) could not be mobilised to other strains of E. coli, and the mobilising plasmid could be cured from capsulate transconjugants without loss of the ability to produce colanic acid. All such cured transconjugants contained an insertion of Tn7 in the chromosome, suggesting that the transposon might be involved in mobilisation of the rcs genes from Klebsiella sp. to E. coli. These findings explain previous observations that the ability to manufacture capsular polysaccharide could be transferred by plasmids between Klebsiella sp. and E. coli.  相似文献   

9.
Plasmid pULB113 (RP4::mini-Mu), which contains the mini-Mu transposon, promoted both homologous and heterologous gene transfer from Pseudomonas fluorescens 6.2 and Alcaligenes eutrophus CH34. Homologous gene transfer in P. fluorescens 6.2 and A. eutrophus CH34 occurred at a frequency of 10(-4) to 10(-5), and recombinants inherited unselected recessive markers, suggesting a process of chromosome mobilization. Loci involved in autotrophic growth were among those transferred in A. eutrophus. In heterospecific matings, markers were transferred from P. fluorescens to A. eutrophus, Salmonella typhimurium LT2, and Escherichia coli, from A. eutrophus to P. fluorescens, and from Erwinia carotovora subsp. chrysanthemi to A. eutrophus. Heterospecific matings resulted in the formation of R-prime plasmids at frequencies of 10(-7) to 10(-4) per transferred plasmid. When S. typhimurium was the recipient, we observed R-prime plasmids with both restriction-proficient and restriction-deficient strains, although restriction markedly affected the frequency of transfer of pULB113. R-prime plasmids were quite stable, but lost the transposed marker more easily in a rec+ background than in a recA background, suggesting excision of transposed material by reciprocal recombination between flanking copies of mini-Mu. R-prime plasmids could be transferred easily into different recipients and were used in complementation studies. PstI restriction digests of four R-prime plasmids carrying P. fluorescens 6.2 DNA showed a number of additional bands, suggesting that several genes were transposed together with the selected marker on the plasmid.  相似文献   

10.
Transposons Tn501 (specifying mercury resistance) and Tn7 (specifying resistance to trimethoprim and streptomycin) were introduced into extra-slow-growing Rhizobium japonicum by conjugal transfer of the 82 kilobase chimeric plasmid pUW942. Mercury-resistant transconjugants were obtained at a frequency of 10 to 10. The transfer frequency of streptomycin resistance was lower than that of mercury resistance, and Tn7 was relatively unstable. pUW942 was not maintained as an autonomously replicating plasmid in R. japonicum strains. However, some of the Hg transconjugants from the RJ19FY, RJ17W, and RJ12S strains acquired antibiotic markers of the vector plasmid pUW942. Southern hybridization of plasmid and chromosomal DNA of R. japonicum strains with P-labeled pUW942 and pAS8Rep-1, the same plasmid as pUW942 except that it does not contain Tn501, revealed the formation of cointegrates between pUW942 and the chromosome of R. japonicum. More transconjugants with only Tn501 insertions in plasmids or the chromosome were obtained in crosses with strains RJ19FY and RJ17W than with RJ12S. These retained stable Hg both in plant nodules and under nonselective in vitro growth conditions. One of the RJ19FY and two of the RJ12S Hg transconjugants with vector plasmid-chromosome cointegrates conjugally transferred plasmids of 82, 84 or 86, and 90 kilobases, respectively, into plasmidless Escherichia coli C. These plasmids strongly hybridized to pUW942 and EcoRI digests of total DNA of each respective R. japonicum strain but not to indigenous plasmid DNA of the R. japonicum strains. These R' plasmids consisted of pUW942-specific EcoRI fragments and an additional one or two new fragments derived from the R. japonicum chromosome.  相似文献   

11.
Multiple-drug-resistant strains of Escherichia coli were isolated from the water at an estuarine site. They represented about 8.3% of the total E. coli population. Fifty-five strains, representing each of the 32 resistance patterns identified, were mated with an E. coli K-12 F- strain. Matings were performed on membrane filters, and the cells were washed to remove any colicins produced by the donors. Thirty-one strains, about 5% of the mean E. coli density in the samples, transferred drug resistance and, hence, posessed conjugative R plasmids. Of these, 80% transferred drug resistance at a frequency of about 10(-4) or less. Nine environmental R+ strains were mated with three fecal recipients. The R-plasmid transfer frequencies to the fecal strains from the environmental donors correlated well with those from a derepressed K-12 R+ laboratory donor. The R+ X K-12 F- lac- transconjugants from 16 environmental strains were "backcrossed" to a lac+ K-12 F- strain. All transfer frequencies were higher in the backcrosses than in the original matings from the environmental donor. Furthermore, 7 of 13 different transconjugants, which accepted plasmids at repressed frequencies of less than 10(-3), donated them at frequencies greater than 10(-2). This suggests that these were derepressed plasmids in a repressed host.  相似文献   

12.
The closely linked structural genes of phosphofructokinase (pfkA) and triosephosphate isomerase (tpi) of Escherichia coli were separately cloned onto plasmid pBR322. By gene dosage effects, transformed cells of E. coli C600 with these pBR322 hybrid plasmids showed 7- and 16-fold increases in the specific activities of phosphofructokinase and triosephosphate isomerase, respectively, over the specific activities in C600. Dried preparations of E. coli cells dosed with these genes showed appreciably high ATP-regenerating activity.  相似文献   

13.
Abstract: Escherichia coli recipient and E. coli donor strains carrying streptothricin-resistance genes were inoculated together into different soil microcosms. These genes were localized on the narrow host range plasmids of incompatibility (Inc) groups FII, Il, and on the broad host range plasmids of IncP1, IncN, IncW3, and IncQ. The experiments were intended to study the transfer of these plasmids in sterile and non-sterile soil with and without antibiotic selective pressure and in planted soil microcosms. Transfer of all broad host range plasmids from the introduced E. coli donor into the recipient was observed in all microcosm experiments. These results indicate that broad host range plasmids encoding short and rigid pili might spread in soil environments by conjugative transfer. In contrast, transfer of the narrow host range plasmids of IncFII and IncI1, into E. coli recipients was not found in sterile or non-sterile soil. These plasmids encoded flexible pili or flexible and rigid pili, respectively. In all experiments highest numbers of transconjugants were detected for the IncP1-plasmid (pTH16). There was evidence with plasmids belonging to IncP group transferred by conjugation into a variety of indigenous soil bacteria at detectable frequencies. Significantly higher numbers of indigenous transconjugants were obtained for the IncP-plasmid under antibiotic selection pressure, and a greater diversity of transconjugants was detected. Availability of nutrients and rhizosphere exudates stimulated transfer in soil. Furthermore, transfer of the IncN-plasmid (pIE1037) into indigenous bacteria of the rhizosphere community could be detected. The transconjugants were determined by BIOLOG as Serratia liquefaciens . Despite the known broad host range of IncW3 and IncQ-plasmids, transfer into indigenous soil bacteria could not be detected.  相似文献   

14.
Abstract Regulation of capsular biosynthesis ( rcs ) genes, encoding the ability to induce the production of a colanic acid polysaccharide capsule, were transferred to Escherichia coli by conjugation with Klebsiella pneumoniae (aerogenes) of capsular serotype K36. Transfer was mediated by a 58.4-MDa conjugative plasmid of incompatibility group IncM, which carried a copy of Tn7 (specifying resistance to trimethoprim and streptomycin) together with determinants for several further resistances. This plasmid did not carry the rcs genes itself, but mediated the conjugative recA -dependent transfer of part of the Klebsiella chromosome to E. coli . Once resident in E. coli , the rcs gene(s) could not be mobilised to other strains of E. coli , and the mobilising plasmid could be cured from capsulate transconjugants without loss of the ability to produce colanic acid. All such cured transconjugants contained an insertion of Tn7 in the chromosome, suggesting that the transposon might be involved in mobilisation of the rcs genes from Klebsiella sp. to E. coli . These findings explain previous observations that the ability to manufacture capsular polysaccharide could be transferred by plasmids between Klebsiella sp. and E. coli .  相似文献   

15.
Transfer of broad host-range plasmids to sulphate-reducing bacteria   总被引:3,自引:0,他引:3  
Abstract The broad-host-range, IncQ, plasmid R300B (Sm, Su) has been stably transferred to two strains of sulphate-reducing bacteria ( Desulfovibrio sp. 8301 and Desulfovibrio desulfuricans 8312), using the IncP1 transfer system of the helper plasmid pRK2013 and cocultivation of sulphate-reducing bacteria with facultative anaerobes in media provided with sulphate and nitrate ions as electron acceptors. R300B was transferred at a frequency of 10−2 to 1 per acceptor cell. The SmR marker was expressed in both sulphate-reducing bacteria strains while the SuR was expressed only in strain 8301. R300B can also be transferred back to E. coli strains provided with IncP1 plasmids taking advantage of the retrotransfer ability of these plasmids. This occurs at a frequency up to 10−4 by recipient E. coli cell.  相似文献   

16.
Abstract Inc-P plasmids, RP4, R751, pMO850, and pRK2013 were transferred to Erwinia carotovora . These plasmids were stably maintained in E. carotovora and the transconjugants were efficient donors of respective plasmids to other strains of E. carotovora and Escherichia coli . These plasmids were not able to mobilize chromosomal markers from one strain of E. carotovora to another strain of E. carotovora even in the presence of homologous DNA sequences on the plasmid and the bacterial chromosome. The presence of Inc-P plasmid does not affect the pathogenic phenotype of E. carotovora . A broad host range Inc-P cosmid, pLAFR1, was transferred to E. carotovora with the help of pRK2013, suggesting the potential use of a binary plasmid system for genetic complementation in E. carotovora .  相似文献   

17.
Abstract From enrichment cultures in the presence of 1 mM NiCl2 200 strains of aerobic bacteria were isolated from 50 samples collected in the metal-processing industry, waste water treatment plants and from solid waste, highly polluted by heavy metals. The strains isolated were characterized with respect to their substrate spectrum and resistance to nickel, cobalt, zinc and cadmium salts and assigned to 21 groups. One representative of each group was described with respect to cell morphology. All strains were Gram-negative, non-sporing rods or cocci. The highest concentrations of nickel, cobalt, zinc, cadmium, copper, mercury, and silver allowing growth on solid media were estimated. Two strains were able to grow at 20 mM NiCl2 and CoCl2, one strain tolerated 12 mM and one 7.5 mM concentrations of these salts.
Fifteen out of 21 strains contained at least one plasmid two contained two plasmids. The plasmid sizes varied between 50 and 340 kbp, except strain 10A, which contained a miniplasmid (2.6 kbp). Attempts to cure four selected strains by exposure to mitomycin C or growth at elevated temperature failed.
By helper-assisted and unassisted conjugation the plasmids of strain 31A were shown to carry nickel and cobalt resistance determinants. Alcaligenes eutrophus strains H16 and N9A and denative of strain CH34 lacking one or both of its native metal resistance plasmids were used as recipients. Both plasmids, p TOM8 and pTOM9, of strain 31A carried resistance properties which were expressed in all recipients except. A. eutrophus H16, in which only nickel resistance was expressed.
Plasmid pTOM3 residing in strain 10A could not be transferred as such. However, transconjugants derived from helper (pULB113)-assisted matings carried co-integrates of various sizes and were resistant to nickel and cobalt.  相似文献   

18.
Catechol 1,2-dioxygenase (EC 1.13.1.1), the product of the catA gene, catalyzes the first step in catechol utilization via the beta-ketoadipate pathway. Enzymes mediating subsequent steps in the pathway are encoded by the catBCDE genes which are carried on a 5-kilobase-pair (kbp) EcoRI restriction fragment isolated from Acinetobacter calcoaceticus. This DNA was used as a probe to identify Escherichia coli colonies carrying recombinant pUC19 plasmids with overlapping sequences. Repetition of the procedure yielded an A. calcoaceticus 6.7-kbp EcoRI restriction fragment which contained the catA gene and bordered the original 5-kbp EcoRI restriction fragment. When the catA-containing fragment was placed under the control of the lac promoter on pUC19 and induced with isopropylthiogalactopyranoside, catechol dioxygenase was formed in E. coli at twice the level found in fully induced cultures of A. calcoaceticus. A. calcoaceticus strains with mutations in the catA gene were transformed to wild type by DNA from lysates of E. coli strains carrying the catA gene on recombinant plasmids. Thus, A. calcoaceticus strains with a mutated gene can be used in a transformation assay to identify E. coli clones in which at least part of the wild-type gene is present but not necessarily expressed.  相似文献   

19.
Recombinant cosmids containing a Rhizobium japonicum gene involved in both hydrogenase (Hup) and nitrogenase (Nif) activities were isolated. An R. japonicum gene bank utilizing broad-host-range cosmid pLAFR1 was conjugated into Hup- Nif- R. japonicum strain SR139. Transconjugants containing the nif/hup cosmid were identified by their resistance to tetracycline (Tcr) and ability to grow chemoautotrophically (Aut+) with hydrogen. All Tcr Aut+ transconjugants possessed high levels of H2 uptake activity, as determined amperometrically. Moreover, all Hup+ transconjugants tested possessed the ability to reduce acetylene (Nif+) in soybean nodules. Cosmid DNAs from 19 Hup+ transconjugants were transferred to Escherichia coli by transformation. When the cosmids were restricted with EcoRI, 15 of the 19 cosmids had a restriction pattern with 13.2-, 4.0-, 3.0-, and 2.5-kilobase DNA fragments. Six E. coli transformants containing the nif/hup cosmids were conjugated with strain SR139. All strain SR139 transconjugants were Hup+ Nif+. Moreover, one nif/hup cosmid was transferred to 15 other R. japonicum Hup- mutants. Hup+ transconjugants of six of the Hup- mutants appeared at a frequency of 1.0, whereas the transconjugants of the other nine mutants remained Hup-. These results indicate that the nif/hup gene cosmids contain a gene involved in both nitrogenase and hydrogenase activities and at least one and perhaps other hup genes which are exclusively involved in H2 uptake activity.  相似文献   

20.
EPEC adherence factor (EAF) plasmids from three strains of enteropathogenic Escherichia coli (EPEC) - E2347/69 (O127:H6), E20517 (O111:H2) and E24582 (O142:H6) - were examined. The EAF plasmids were all marked with ampicillin resistance by transposition of Tn801 to give pDEP1, pDEP2 and pDEP11, respectively. All three plasmids showed incompatibility with an FIme and an FIV plasmid and had some similarity in restriction enzyme digest patterns. Plasmid pDEP1 differed from pDEP2 and pDEP11 in being autotransferring and fertility-inhibition positive. An EAF probe consisting of a 1 kb BamHI-SalI restriction endonuclease fragment of the prototype EAF-associated plasmid pMAR2 hybridized to similar-sized SalI-BamHI fragments of pDEP1 and pDEP11 but to a different-sized fragment of plasmid pDEP2. Loss of the EAF plasmids from EPEC strains resulted in a marked reduction in the ability of these strains to adhere to HEp-2 cells. The EAF-plasmid-negative variants did not express a 94 kDa outer-membrane protein (OMP). When these EAF plasmids were reintroduced into EAF-plasmid-negative EPEC strains a high level of adherence equivalent to that of the parent EPEC strains was restored and a 94 kDa OMP was usually expressed. However, when EAF plasmids were transferred into E. coli K12 or non-EPEC E. coli the host strains either did not adhere or adhered poorly to the HEp-2 cells. These transconjugants did not express a 94 kDa OMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号