首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane Ca2+ pumps (PMCA pumps) are Ca2+-Mg2+ ATPases that expel Ca2+ from the cytosol to extracellular space and are pivotal to cell survival and function. PMCA pumps are encoded by the genes PMCA1, -2, -3, and -4. Alternative splicing results in a large number of isoforms that differ in their kinetics and activation by calmodulin and protein kinases A and C. Expression by 4 genes and a multifactorial regulation provide redundancy to allow for animal survival despite genetic defects. Heterozygous mice with ablation of any of the PMCA genes survive and only the homozygous mice with PMCA1 ablation are embryolethal. Some PMCA isoforms may also be involved in other cell functions. Biochemical and biophysical studies of PMCA pumps have been limited by their low levels of expression. Delineation of the exact physiological roles of PMCA pumps has been difficult since most cells also express sarco/endoplasmic reticulum Ca2+ pumps and a Na+-Ca2+-exchanger, both of which can lower cytosolic Ca2+. A major limitation in the field has been the lack of specific inhibitors of PMCA pumps. More recently, a class of inhibitors named caloxins have emerged, and these may aid in delineating the roles of PMCA pumps.  相似文献   

2.
Pande J  Mallhi KK  Grover AK 《Cell calcium》2005,37(3):245-250
The plasma membrane Ca2+ pump (PMCA) is a Ca2+-Mg2+-ATPase that expels Ca2+ from cells to help them maintain low concentrations of cytosolic Ca2+ ([Ca2+]i). It contains five putative extracellular domains (PEDs). Earlier we had reported that binding to PED2 leads to PMCA inhibition. Mutagenesis of residues in transmembrane domain 6 leads to loss of PMCA activity. PED3 connects transmembrane domains 5 and 6. PED3 is only five amino acid residues long. By screening a phage display library, we obtained a peptide sequence that binds this target. After examining a number of peptides related to this original sequence, we selected one that inhibits the PMCA pump (caloxin 3A1). Caloxin 3A1 inhibits PMCA but not the sarcoplasmic reticulum Ca2+-pump. Caloxin 3A1 did not inhibit formation of the 140 kDa acylphosphate intermediate from ATP or its degradation. Thus, PEDs play a role in the reaction cycle of PMCA even though sites for binding to the substrates Ca2+ and Mg-ATP2-, and the activator calmodulin are all in the cytosolic domains of PMCA. In endothelial cells exposed to low concentration of a Ca2+-ionophore, caloxin 3A1 caused a further increase in [Ca2+]i proving its ability to inhibit PMCA pump extracellularly. Thus, even though PED3 is the shortest PED, it plays key role in the PMCA function.  相似文献   

3.
The plasma membrane calcium-ATPase (PMCA) helps to control cytosolic calcium levels by pumping out excess Ca2+. PMCA is regulated by the Ca2+ signaling protein calmodulin (CaM), which stimulates PMCA activity by binding to an autoinhibitory domain of PMCA. We used single-molecule polarization methods to investigate the mechanism of regulation of the PMCA by CaM fluorescently labeled with tetramethylrhodamine. The orientational mobility of PMCA-CaM complexes was determined from the extent of modulation of single-molecule fluorescence upon excitation with a rotating polarization. At a high Ca2+ concentration, the distribution of modulation depths reveals that CaM bound to PMCA is orientationally mobile, as expected for a dissociated autoinhibitory domain of PMCA. In contrast, at a reduced Ca2+ concentration a population of PMCA-CaM complexes appears with significantly reduced orientational mobility. This population can be attributed to PMCA-CaM complexes in which the autoinhibitory domain is not dissociated, and thus the PMCA is inactive. The presence of these complexes demonstrates the inadequacy of a two-state model of Ca2+ pump activation and suggests a regulatory role for the low-mobility state of the complex. When ATP is present, only the high-mobility state is detected, revealing an altered interaction between the autoinhibitory and nucleotide-binding domains.  相似文献   

4.
5.
In a previous study we described the inhibitory action of a cytosolic protein fraction from heart muscle on ATP-dependent Ca2+ uptake by sarcoplasmic reticulum; further, this inhibition was shown to be blocked by an inhibitor antagonist, also derived from the cytosol (Narayanan et al. Biochim Biophys Acta 735: 53-66, 1983). The present study examined the effects of the endogenous cytosolic Ca2+ transport inhibitor and its antagonist on ATP-dependent Ca2+ uptake by sarcolemmal vesicles isolated from rat and canine heart. The cytosolic inhibitor caused strong inhibition (up to 97%) of Ca2+ uptake by sarcolemma (SL); this inhibition could be reversed by the cytosolic inhibitor antagonist. Studies on the characteristics of inhibition revealed the following: a) Inhibition was dependent on the concentration of the inhibitor (50% inhibition with approximately 80 micrograms inhibitor protein). b) The inhibitor reduced the velocity of Ca2+ uptake without appreciably influencing the apparent affinity of the transport system for Ca2+ but caused greater than 2-fold decrease in its apparent affinity for ATP. c) The rates of unidirectional passive Ca2+ release from actively Ca2+ loaded SL vesicles were not altered by low concentrations of the inhibitor (less than 100 micrograms/ml) which were effective in producing marked inhibition of Ca2+ uptake; at higher concentrations (greater than 100 micrograms/ml), the inhibitor caused increase in the rates of passive Ca2+ release. These findings demonstrate that the activity of the ATP-driven Ca2+ pump of cardiac SL can be regulated in vitro by endogenous cytosolic proteins.  相似文献   

6.
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca(2+) pump(s) (PMCA) isoform 1. PMCA extrude Ca(2+) from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1-4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca(2+)-Mg(2+)-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant=17±2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant=45±4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca(2+) concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

7.
The isoform-specific interaction of plasma membrane Ca(2+)-ATPase (PMCA) pumps with partner proteins has been explored using a yeast two-hybrid technique. The 90 N-terminal residues of two pump isoforms (PMCA2 and PMCA4), which have a low degree of sequence homology, have been used as baits. Screening of 5 x 10(6) clones of a human brain cDNA library yielded approximately 100 LEU2- and galactoside-positive clones for both pumps. A clone obtained with the PMCA4 bait specified the epsilon-isoform of the 14-3-3 protein, whereas no 14-3-3epsilon clone was obtained with the PMCA2 bait. The 14-3-3epsilon protein immunoprecipitated with PMCA4 (not with PMCA2) when expressed in HeLa cells. Overexpression of 14-3-3epsilon in HeLa cells together with targeted aequorins showed that the ability of the cells to export Ca(2+) was impaired; stimulation with histamine, an inositol 1,4,5-trisphosphate-producing agonist, generated higher cytosolic [Ca(2+)] transients, higher post-transient plateaus of the cytosolic [Ca(2+)], and higher Ca(2+) levels in the endoplasmic reticulum lumen and in the subplasmalemmal domain. Thus, the interaction with 14-3-3epsilon inhibited PMCA4. Silencing of the 14-3-3epsilon gene by RNA interference significantly reduced the expression of 14-3-3epsilon, substantially decreasing the height of the histamine-induced cytosolic [Ca(2+)] transient and of the post-transient cytosolic [Ca(2+)] plateau.  相似文献   

8.
The mechanism of activation of the cardiac calcium release channel/ryanodine receptor (RyR) by luminal Ca2+ was investigated in native canine cardiac RyRs incorporated into lipid bilayers in the presence of 0.01 microM to 2 mM Ca2+ (free) and 3 mM ATP (total) on the cytosolic (cis) side and 20 microM to 20 mM Ca2+ on the luminal (trans) side of the channel and with Cs+ as the charge carrier. Under conditions of low trans Ca2+ (20 microM), increasing cis Ca2+ from 0.1 to 10 microM caused a gradual increase in channel open probability (Po). Elevating cis Ca2+ above 100 microM resulted in a gradual decrease in Po. Elevating trans [Ca2+] enhanced channel activity (EC50 approximately 2.5 mM at 1 microM cis Ca2+) primarily by increasing the frequency of channel openings. The dependency of Po on trans [Ca2+] was similar at negative and positive holding potentials and was not influenced by high cytosolic concentrations of the fast Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N, N-tetraacetic acid. Elevated luminal Ca2+ enhanced the sensitivity of the channel to activating cytosolic Ca2+, and it essentially reversed the inhibition of the channel by high cytosolic Ca2+. Potentiation of Po by increased luminal Ca2+ occurred irrespective of whether the electrochemical gradient for Ca2+ supported a cytosolic-to-luminal or a luminal-to-cytosolic flow of Ca2+ through the channel. These results rule out the possibility that under our experimental conditions, luminal Ca2+ acts by interacting with the cytosolic activation site of the channel and suggest that the effects of luminal Ca2+ are mediated by distinct Ca2+-sensitive site(s) at the luminal face of the channel or associated protein.  相似文献   

9.
The biochemical functions of intracellular and plasma membrane Ca2+-transporting ATPases in the control of cytosolic and organellar Ca2+ levels are well established, but the physiological roles of specific isoforms are less well understood. There appear to be three different types of Ca2+ pumps in mammalian tissues: the sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), which sequester Ca2+ within the endoplasmic or sarcoplasmic reticulum, the plasma membrane Ca2+-ATPases (PMCAs), which extrude Ca2+ from the cell, and the putative secretory pathway Ca2+-ATPase (SPCA), the function of which is poorly understood. This review describes the results of recent analyses of mouse models with null mutations in the genes encoding SERCA and PMCA isoforms and genetic studies of SERCA and SPCA dysfunction in both humans and model organisms. These studies are yielding important insights regarding the physiological functions of individual Ca2+-transporting ATPases in vivo.  相似文献   

10.
A rise in baseline cytosolic free Ca2+ in canine vascular endothelial-like cells (VEC) lining the luminal surface of the polyester arterial prosthesis is described. In one, three and six month implantation experiments we employed six adult mongrel dogs, polyester arterial prostheses Arteknit Ra K, fluorescent Ca2+ indicator Fura-2 and digital imaging microscopy to study cytosolic free Ca2+ in cultured VEC. The electron microscopy scanning of the luminal surface in different regions of the graft were also performed. A rise in cytosolic free Ca2+ in the VEC lining the luminal surface of the prosthesis is probably the result of the immunologic reaction and mechanical stress which stimulate the proliferation activity of the endothelial cells. It seems that the baseline cytosolic free Ca2+ reflects the course of the endothelization process on the polyester arterial prosthesis.  相似文献   

11.
Ca2+-ATPase of the sarcoplasmic reticulum was localized in cryostat sections from three different adult canine skeletal muscles (gracilis, extensor carpi radialis, and superficial digitalis flexor) by immunofluorescence labeling with monoclonal antibodies to the Ca2+-ATPase. Type I (slow) myofibers were strongly labeled for the Ca2+-ATPase with a monoclonal antibody (II D8) to the Ca2+-ATPase of canine cardiac sarcoplasmic reticulum; the type II (fast) myofibers were labeled at the level of the background with monoclonal antibody II D8. By contrast, type II (fast) myofibers were strongly labeled for Ca2+-ATPase of rabbit skeletal sarcoplasmic reticulum. The subcellular distribution of the immunolabeling in type I (slow) myofibers with monoclonal antibody II D8 corresponded to that of the sarcoplasmic reticulum as previously determined by electron microscopy. The structural similarity between the canine cardiac Ca2+-ATPase present in the sarcoplasmic reticulum of the canine slow skeletal muscle fibers was demonstrated by immunoblotting. Monoclonal antibody (II D8) to the cardiac Ca2+-ATPase binds to only one protein band present in the extract from either cardiac or type I (slow) skeletal muscle tissue. By contrast, monoclonal antibody (II H11) to the skeletal type II (fast) Ca2+-ATPase binds only one protein band in the extract from type II (fast) skeletal muscle tissue. These immunopositive proteins coelectrophoresed with the Ca2+-ATPase of the canine cardiac sarcoplasmic reticulum and showed an apparent Mr of 115,000. It is concluded that the Ca2+-ATPase of cardiac and type I (slow) skeletal sarcoplasmic reticulum have at least one epitope in common, which is not present on the Ca2+-ATPase of sarcoplasmic reticulum in type II (fast) skeletal myofibers. It is possible that this site is related to the assumed necessity of the Ca2+-ATPase of the sarcoplasmic reticulum in cardiac and type I (slow) skeletal myofibers to interact with phosphorylated phospholamban and thereby enhance the accumulation of Ca2+ in the lumen of the sarcoplasmic reticulum following beta-adrenergic stimulation.  相似文献   

12.
The possibility that inositol 1,4,5-trisphosphate (IP3) may act as a Ca2+-mobilizing second messenger in cardiac muscle in a manner analogous to its actions in other cell types has been examined using saponin-permeabilized myocytes and isolated cardiac sarcoplasmic reticulum. Myocytes permeabilized in the presence of MgATP2- sequestered Ca2+ to a level of about 200 nM, similar to the cytosolic free Ca2+ concentration of intact cells, but addition of IP3 was ineffective in causing Ca2+ release from intracellular stores. Similarly, IP3 (up to 50 microM) was unable to inhibit Ca2+ uptake or cause Ca2+ release from isolated canine cardiac sarcoplasmic reticulum vesicles in the presence of either EGTA or sodium vanadate. These results indicate that IP3 is unlikely to mediate mobilization of intracellular Ca2+ stores in myocardial cells.  相似文献   

13.
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.  相似文献   

14.
Cellular populations involved in resistance against T. cruzi infection were characterized from mice chronically infected with the parasite. Mice transfused with spleen cells (SC), nylon-wool-non-adherent spleen cells (NWNA) or sera from mice chronically infected with T. cruzi, showed an enhanced resistance against challenge with the parasite. The protective activity of NWNA but not of SC was completely abrogated by treatment with anti-Thy1.2 monoclonal antibodies (mAb) and complement (C). Pretreatment of NWNA cells from chronically infected mice with either anti-L3T4 or anti-Lyt 2.2 mAb partially reduced the transfer of resistance. When both L3T4+ and Lyt2.2+ cells were depleted from NWNA populations, transfer of resistance was abolished. These results appear to indicate that L3T4+, Lyt2.2+ T cell subsets and non-T cells are involved in the immunity to T. cruzi.  相似文献   

15.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

16.
The main role of the plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA) is in the removal of Ca2+ from the cytosol. Recently, we and others have suggested a new function for PMCA as a modulator of signal transduction pathways. This paper shows the physical interaction between PMCA (isoforms 1 and 4) and alpha-1 syntrophin and proposes a ternary complex of interaction between endogenous PMCA, alpha-1 syntrophin, and NOS-1 in cardiac cells. We have identified that the linker region between the pleckstrin homology 2 (PH2) and the syntrophin unique (SU) domains, corresponding to amino acids 399-447 of alpha-1 syntrophin, is crucial for interaction with PMCA1 and -4. The PH2 and the SU domains alone failed to interact with PMCA. The functionality of the interaction was demonstrated by investigating the inhibition of neuronal nitric-oxide synthase-1 (NOS-1); PMCA is a negative regulator of NOS-1-dependent NO production, and overexpression of alpha-1 syntrophin and PMCA4 resulted in strongly increased inhibition of NO production. Analysis of the expression levels of alpha-1 syntrophin protein in the heart, skeletal muscle, brain, uterus, kidney, or liver of PMCA4-/- mice, did not reveal any differences when compared with those found in the same tissues of wild-type mice. These results suggest that PMCA4 is tethered to the syntrophin complex as a regulator of NOS-1, but its absence does not cause collapse of the complex, contrary to what has been reported for other proteins within the complex, such as dystrophin. In conclusion, the present data demonstrate for the first time the localization of PMCA1b and -4b to the syntrophin.dystrophin complex in the heart and provide a specific molecular mechanism of interaction as well as functionality.  相似文献   

17.
Cardiac sarcolemma was purified from canine ventricles. Enrichment of the sarcolemmal membranes was demonstrated by the high (Na+ + K+)-ATPase activity of 28.0 +/- 1.5 mumol Pi/mg protein per h and the high concentration of muscarinic receptors with the Bmax of 8.2 +/- 2.5 pmol/mg protein as determined by [3H]QNB binding. The purified sarcolemma also contains significant levels of a membrane-bound Ca2+ and phospholipid-dependent protein kinase (protein kinase C). To elucidate the protein kinase C activity in sarcolemma, a prior incubation of the membranes with EGTA and Triton X-100 was necessary. The specific activity of protein kinase C was found to be 131.4 pmol Pi/mg per min, in the presence of 6.25 micrograms phosphatidylserine and 0.5 mM CaCl2. Treatment of sarcolemma with 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBu2) resulted in a concentration-dependent activation of protein kinase C activity. The effect of TPA and PBu2 on protein kinase C in sarcolemma was independent of exogenous Ca2+ and phosphatidylserine. Polymyxin B inhibited phorbol-ester-induced activation of protein kinase C activity. The distribution of protein kinase C in the cytosolic fraction was also examined. The specific activity of the kinase in the cytosolic fraction was 59.7 pmol Pi/mg per min. However, the total protein kinase C activity in the cytosol was 213500 pmol Pi/min, compared to that of 1025 pmol Pi/min in the sarcolemma isolated from approx. 100 g of canine ventricular muscle. Several endogenous proteins in cardiac sarcolemma were phosphorylated in the presence of Ca2+ and phosphatidylserine. The major substrates for protein kinase C were proteins of Mr 94 000, 87 000, 78 000, 51 000, 46 000, 11 500 and 10 000. Most of these substrate proteins have not been identified before. Other proteins of Mr 38 000, 31 000 and 15 000 were markedly phosphorylated in the presence of Ca2+ only. Phosphorylation of phospholamban (Mr 27 000 and 11 000) was also stimulated in the presence of Ca2+ and phosphatidylserine, but the low Mr form of phospholamban was distinct from two other low Mr substrate proteins for protein kinase C. Polymyxin B was more selective in inhibiting the protein kinase C dependent phosphorylation. On the other hand, trifluoperazine selectively inhibited the phosphorylation of phospholamban and Mr 15 000 protein. Although the exact function of this kinase is unknown, based on these observations, we believe that protein kinase C in the cardiac sarcolemma may play an important role in the cell-surface-signal regulated cardiac function.  相似文献   

18.
Plasma membrane Ca(2+)-ATPases (PMCAs) are involved in local Ca(2+) signaling and in the spatial control of Ca(2+) extrusion, but how different PMCA isoforms are targeted to specific membrane domains is unknown. In polarized MDCK epithelial cells, a green fluorescent protein-tagged PMCA4b construct was targeted to the basolateral membrane, whereas a green fluorescent protein-tagged PMCA2b construct was localized to both the apical and basolateral domain. The PDZ protein-binding COOH-terminal tail of PMCA2b was not responsible for its apical membrane localization, as a chimeric pump made of an NH(2)-terminal portion from PMCA4 and a COOH-terminal tail from PMCA2b was targeted to the basolateral domain. Deletion of the last six residues of the COOH terminus of either PMCA2b or PMCA4b did not alter their membrane targeting, suggesting that PDZ protein interactions are not essential for proper membrane localization of the pumps. Instead, we found that alternative splicing affecting the first cytosolic loop determined apical membrane targeting of PMCA2. Only the "w" form, which contains a 45-amino acid residue insertion, showed prominent apical membrane localization. By contrast, the x and z splice variants containing insertions of 14 and 0 residues, respectively, localized to the basolateral membrane. The w splice insert was the crucial determinant of apical PMCA2 localization, and this was independent of the splice configuration at the COOH-terminal end of the pump; both PMCA2w/b and PMCA2w/a showed prominent apical targeting, whereas PMCA2x/b, PMCA2z/b, and PMCA2z/a were confined to the basolateral membrane. These data report the first differential effect of alternative splicing within the first cytosolic loop of PMCA2 and help explain the selective enrichment of specific PMCA2 isoforms in specialized membrane compartments such as stereocilia of auditory hair cells.  相似文献   

19.
Recently, we reported indirect evidence that plasma membrane Ca2+-ATPase (PMCA) can mediate B-type Ca2+ channels of cardiac myocytes. In the present study, in order to bring more direct evidence, purified PMCA from human red blood cells (RBC) was reconstituted into giant azolectin liposomes amenable to the patch-clamp technique. Purified RBC PMCA was used because it is available pure in larger quantity than cardiac PMCA. The presence of B-type Ca2+ channels was first investigated in native membranes of human RBC. They were detected and share the characteristics of cardiac myocytes. They spontaneously appeared in scarce short bursts of activity, they were activated by chlorpromazine (CPZ) with an EC50 of 149 mmole/l or 1 mmole/l vanadate, and then switched off by 10 mmole/l eosin or dose-dependently blocked by 1-5 mmole/l ATP. Independent of membrane potential, the channel gating exhibited complex patterns of many conductance levels, with three most often observed conductance levels of 22, 47 and 80 pS. The activation by vanadate suggests that these channels could play a role in the influx of extracellular Ca2+ involved in the vanadate-induced Gardos effect. In PMCA-reconstituted proteoliposomes, nearly half of the ATPase activity was retained and clear "channel-like" openings of Ba2+- or Ca2+-conducting channels were detected. Channel activity could be spontaneously present, lasting the patch lifetime or, when previously quiescent, activity could be induced by application of 50 mmole/l CPZ only in presence of 25 U/ml calmodulin (CaM), or by application of 1 mmole/l vanadate alone. Eosin (10 mmole/l) and ATP (5 mmole/l) significantly reduced spontaneous activity. Channel gating characteristics were similar to those of RBC, with main conductance levels of 21, 40 and 72 pS. The lack of direct activation by CPZ alone might be attributed to a purification-induced modification or absence of unidentified regulatory component(s) of PMCA. Despite a few differences in results between RBC and reincorporated PMCA, most probably attributable to the decrease in ATPase activity following the procedure of reincorporation, the present experimental conditions appear to reveal a channel-mode of the PMCA that shares many similarities with the B-type Ca2+ channel.  相似文献   

20.
Calcium pumps of plasma membrane and cell interior   总被引:1,自引:0,他引:1  
Calcium entering the cell from the outside or from intracellular organelles eventually must be returned to the extracellular milieu or to intracellular storage organelles. The two major systems capable of pumping Ca2+ against its large concentration gradient out of the cell or into the sarco/endoplasmatic reticulum are the plasma membrane Ca2+ ATPases (PMCAs) and the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), respectively. In mammals, multigene families code for these Ca2+ pumps and additional isoform subtypes are generated via alternative splicing. PMCA and SERCA isoforms show developmental-, tissue- and cell type-specific patterns of expression. Different PMCA and SERCA isoforms are characterized by different regulatory and kinetic properties that likely are optimized for the distinct functional tasks fulfilled by each pump in setting resting cytosolic or intra-organellar Ca2+ levels, and in shaping intracellular Ca2+ signals with spatial and temporal resolution. The loss or malfunction of specific Ca2+ pump isoforms is associated with defects such as deafness, ataxia or heart failure. Understanding the involvement of different Ca2+ pump isoforms in the pathogenesis of disease allows their identification as therapeutic targets for the development of selective strategies to prevent or combat the progression of these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号