首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential ( Ψ leaf), leaf hydraulic conductance ( K leaf), and midday transpiration ( E ) in four temperate woody species exposed to controlled drought conditions ranging from mild to lethal. During drought the vulnerability of K leaf to declining Ψ leaf varied greatly among the species sampled. Following drought, plants were rewatered and the rate of E and K leaf recovery was found to be strongly dependent on the severity of the drought imposed. Gas exchange recovery was strongly correlated with the relatively slow recovery of K leaf for three of the four species, indicating conformity to a hydraulic-stomatal limitation model of plant recovery. However, there was also a shift in the sensitivity of stomata to Ψ leaf suggesting that the plant hormone abscisic acid may be involved in limiting the rate of stomatal reopening. The level of drought tolerance varied among the four species and was correlated with leaf hydraulic vulnerability. These results suggest that species-specific variation in hydraulic properties plays a fundamental role in steering the dynamic response of plants during recovery.  相似文献   

2.
Hydraulic conductance of leaves ( K leaf) typically decreases with increasing water stress. However, the extent to which the decrease in K leaf is due to xylem cavitation, conduit deformation or changes in the extra-xylary pathway is unclear. We measured K leaf concurrently with ultrasonic acoustic emission (UAE) in dehydrating leaves of two vessel-bearing and two tracheid-bearing species to determine whether declining K leaf was associated with an accumulation of cavitation events. In addition, images of leaf internal structure were captured using cryo-scanning electron microscopy, which allowed detection of empty versus full and also deformed conduits. Overall, K leaf decreased as leaf water potentials ( Ψ L) became more negative. Values of K leaf corresponding to bulk leaf turgor loss points ranged from 13 to 45% of their maximum. Additionally, Ψ L corresponding to a 50% loss in conductivity and 50% accumulated UAE ranged from −1.5 to −2.4 MPa and from −1.1 to −2.8 MPa, respectively, across species. Decreases in K leaf were closely associated with accumulated UAE and the percentage of empty conduits. The mean amplitude of UAEs was tightly correlated with mean conduit diameter ( R 2 = 0.94, P  = 0.018). These results suggest that water stress-induced decreases in K leaf in these species are directly related to xylem embolism.  相似文献   

3.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   

4.
The study examined the relationships between whole tree hydraulic conductance ( K tree) and the conductance in roots ( K root) and leaves ( K leaf) in loblolly pine trees. In addition, the role of seasonal variations in K root and K leaf in mediating stomatal control of transpiration and its response to vapour pressure deficit ( D ) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K root declined faster than K leaf. Although K tree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased K leaf when REW was below 50%. After accounting for the effect of D on g s, the seasonal decline in K tree caused a 35% decrease in g s and in its sensitivity to D , responses that were mainly driven by K leaf under high REW and by K root under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K tree and g s and the acclimation of trees to changing environmental conditions.  相似文献   

5.
Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity ( K s), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stem hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced midday loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle .  相似文献   

6.
Exchange rates of CO2 and H2O and metabolism of hydrogen peroxide have been measured in leaves of alfalfa ev. Aragón) under drought stress. The inhibitory effect of drought upon photosynthesis depended on the severity of the stress treatment. Leaf water potential (Ψleaf) down to,-2.8 MPa reduced CO2 availability due to stomatal closure and inhibited the rate of photosynthesis. Leaf water potential lower than,-2.8 MPa directly affected CO2 fixation, although CO2 was not limiting. Transpiration was more affected by stornatal closure than photosynthesis, which led to am apparent improvement in WUE (water use efficiency). Alfalfa leaves with Ψleaf lower than,-2.0 MPa had an increased quantum requirement, probably due to the severe stress effect on photoenergetic reactions.
Ethylene evolution from alfalfa leaves increased when they were subjected to Ψleaf of,- 1.6 MPa. Under more severe stress, the leaves showed low or almost no ethylene production. In parallel with the increase in ethyiene production, alfalfa leaves exhibited an increased membrane lipid peroxidation index (maloridialdehyde content) and an increased peroxide content. Superoxide disinutase activity (SOD; EC 1.15.1.1) was not affected by drought stress. Catalase (EC 1.11.1.6) was inhibited at slight stress, but significantly increased at a Ψleaf of -2.0 MPa. Peroxidase (EC 1.11.1.7) was progressively inhibited as drought stress developed. The possible implication of reactive O2 intermediates in drought stress-induced senescence of alfalfa leaves is discussed in the light of the pattern of enzymatic scavenging systems.  相似文献   

7.
Hydraulic conductivity ( K ) in the soil and xylem declines as water potential ( Ψ ) declines. This results in a maximum rate of steady-state transpiration ( E crit) and corresponding minimum leaf Ψ ( Ψ crit) at which K has approached zero somewhere in the soil–leaf continuum. Exceeding these limits causes water transport to cease. A model determined whether the point of hydraulic failure (where K = 0) occurred in the rhizosphere or xylem components of the continuum. Below a threshold of root:leaf area ( A R: A L), the loss of rhizosphere K limited E crit and Ψ crit. Above the threshold, loss of xylem K from cavitation was limiting. The A R: A L threshold ranged from > 40 for coarse soils and/or cavitation-resistant xylem to < 0·20 in fine soils and/or cavitation-susceptible xylem. Comparison of model results with drought experiments in sunflower and water birch indicated that stomatal regulation of E reflected the species' hydraulic potential for extracting soil water, and that the more sensitive stomatal response of water birch to drought was necessary to avoid hydraulic failure. The results suggest that plants should be xylem-limited and near their A R: A L threshold. Corollary predictions are (1) within a soil type the A R: A L should increase with increasing cavitation resistance and drought tolerance, and (2) across soil types from fine to coarse the A R: A L should increase and maximum cavitation resistance should decrease.  相似文献   

8.
The hydraulic architecture of the secondary hemiepiphyte Monstera acuminata was examined in native plants from Los Tuxtlas, Veracruz, Mexico, to determine how it compared to better-known growth forms such as trees, shrubs, lianas and primary hemiepiphytes. Monstera acuminata starts its life cycle as a prostrate herb. As it ascends a tree or other vertical support, the stem becomes thicker, produces larger leaves, and may die back from the base upwards until only aerial feeding roots serve to connect the stem to the soil. Unlike the pattern of vessel-size distribution along the stems of woody dicotyledons, M. acuminata has its wider vessels at the top of the stem, decreasing in diameter towards the base. Also peculiar is the fact that Huber values (axis area/distal leaf area) tend to increase exponentially at higher positions within the plant. Based on the hydraulic conductivity ( k h) and leaf-specific conductivity (LSC, k h/distal leaf area), the base of the stem potentially acts as a severe hydraulic constriction. This constriction is apparently not limiting, as aerial roots are produced further up the stem. The plants have remarkably strong root pressures, up to 225 kPa, which may contribute to the maintenance of functional vessels by refilling them at night or during periods of very high atmospheric humidity, as in foggy weather and rain. In common with dicotyledonous plants, vessel length, vessel diameter, k h, specific conductivity ( k s, k h/axis area) and LSCs were all positively correlated with axis diameter. The features of the hydraulic architecture of M. acuminata may be an evolutionary consequence of an anatomical constraint (lack of vascular cambium and therefore of secondary growth) and the special requirements of the hemiepiphytic growth form.  相似文献   

9.
This study investigated the interspecific differences in vulnerability to xylem embolism of four phreatophytes – two facultative phreatophytes ( Banksia attenuata and B. menziesii ) and two obligate phreatophytes ( B. ilicifolia and B. littoralis ). Species differences at the same position along an ecohydrological gradient on the Gnangara Groundwater Mound, Western Australia were determined in addition to intraspecific differences to water stress between populations in contrasting ecohydrological habitats. Stem- and leaf-specific hydraulic conductivity, as well as Huber values (ratio of stem to leaf area), were also determined to support these findings. We found that where water is readily accessible, there were no interspecific differences in vulnerability to water stress. In contrast both facultative phreatophyte species were more resistant to xylem embolism at the more xeric dune crest site than at the wetter bottom slope site. B. ilicifolia did not differ in vulnerability to embolism, supporting its classification as an obligate phreatophyte. Other measured hydraulic traits ( K S, K L and Huber value) showed no adaptive responses, although there was a tendency for plants at the wetter site to have higher K S and K L. This study highlights the influence site hydrological attributes can have on plant hydraulic architecture across species and environmental gradients.  相似文献   

10.
氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
研究植物碳(C)氮(N)磷(P)化学计量特征, 有助于了解C、N、P元素的分配规律和确定限制植物生长的元素类型, 理解生长速率调控的内在机制。该研究基于盆栽施肥试验, 测定不同N、P供应水平下拟南芥(Arabidopsis thaliana)叶片的生物量和C、N、P含量, 分析拟南芥的限制元素类型、验证生长速率假说、探讨N、P的内稳性差异和C、N、P元素间的异速生长关系。主要结果如下: 盆栽试验基质中限制元素是P, 施N过多可能引起毒害作用; 拟南芥的生长符合生长速率假说, 即随着叶片N:P和C:P的增加, 比生长速率显著减小; 叶片P含量存在显著的调整系数(3.5), 但叶片N含量与基质N含量之间无显著相关; 叶片N和P含量具有显著的异速生长关系, 但不符合N-P3/4关系, 施P肥导致表征N、P异速生长关系的幂指数(0.209)显著低于施N肥处理(0.466)。该研究首次基于温室培养实验分析了拟南芥C、N、P的化学计量特征及其对N、P添加的响应, 研究结果将为野外研究不同物种、群落或生态系统的化学计量特征提供参考。  相似文献   

11.
Leaf and whole plant-level functional traits were studied in five dominant woody savannah species from Central Brazil (Cerrado) to determine whether reduction of nutrient limitations in oligotrophic Cerrado soils affects carbon allocation, water relations and hydraulic architecture. Four treatments were used: control, N additions, P additions and N plus P additions. Fertilizers were applied twice yearly, from October 1998 to March 2004. Sixty-three months after the first nutrient addition, the total leaf area increment was significantly greater across all species in the N- and the N + P-fertilized plots than in the control and in the P-fertilized plots. Nitrogen fertilization significantly altered several components of hydraulic architecture: specific conductivity of terminal stems increased with N additions, whereas leaf-specific conductivity and wood density decreased in most cases. Average daily sap flow per individual was consistently higher with N and N + P additions compared to the control, but its relative increase was not as great as that of leaf area. Long-term additions of N and N + P caused midday PsiL to decline significantly by a mean of 0.6 MPa across all species because N-induced relative reductions in soil-to-leaf hydraulic conductance were greater than those of stomatal conductance and transpiration on a leaf area basis. Phosphorus-fertilized trees did not exhibit significant changes in midday PsiL. Analysis of xylem vulnerability curves indicated that N-fertilized trees were significantly less vulnerable to embolism than trees in control and P-fertilized plots. Thus, N-induced decreases in midday PsiL appeared to be almost entirely compensated by increases in resistance to embolism. Leaf tissue water relations characteristics also changed as a result of N-induced declines in minimum PsiL: osmotic potential at full turgor decreased and symplastic solute content on a dry matter basis increased linearly with declining midday PsiL across species and treatments. Despite being adapted to chronic nutrient limitations, Cerrado woody species apparently have the capacity to exploit increases in nutrient availability by allocating resources to maximize carbon gain and enhance growth. The cost of increased allocation to leaf area relative to water transport capacity involved increased total water loss per plant and a decrease in minimum leaf water potentials. However, the risk of increased embolism and turgor loss was relatively low as xylem vulnerability to embolism and leaf osmotic characteristics changed in parallel with changes in plant water status induced by N fertilization.  相似文献   

12.
Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth   总被引:16,自引:0,他引:16  
We adopted previous N : P stoichiometric models for zooplankton relative growth to predict the relative growth rates of the leaves μ L of vascular plants assuming that annual leaf growth in dry mass is dictated by how leaf nitrogen N L is allocated to leaf proteins and how leaf phosphorus P L is allocated to rRNA. This model is simplified provided that N L scales as some power function of P L across the leaves of different species. This approach successfully predicted the μ L of 131 species of vascular plants based on the observation that, across these species, N L scaled, on average, as the 3/4 power of P L, i.e. N L ∝  P     . When juxtaposed with prior allometric theory and observations, our findings suggest that a transformation in N : P stoichiometry occurs when the plant body undergoes a transition from primary to secondary growth.  相似文献   

13.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 m M NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.  相似文献   

14.
We examined changes in branch hydraulic, leaf structure and gas exchange properties in coast redwood ( Sequoia sempervirens ) and giant sequoia ( Sequoiadendron giganteum ) trees of different sizes. Leaf-specific hydraulic conductivity ( k L) increased with height in S. sempervirens but not in S. giganteum , while xylem cavitation resistance increased with height in both species. Despite hydraulic adjustments, leaf mass per unit area (LMA) and leaf carbon isotope ratios ( δ 13C) increased, and maximum mass-based stomatal conductance ( g mass) and photosynthesis ( A mass) decreased with height in both species. As a result, both A mass and g mass were negatively correlated with branch hydraulic properties in S. sempervirens and uncorrelated in S. giganteum . In addition, A mass and g mass were negatively correlated with LMA in both species, which we attributed to the effects of decreasing leaf internal CO2 conductance ( g i). Species-level differences in wood density, LMA and area-based gas exchange capacity constrained other structural and physiological properties, with S. sempervirens exhibiting increased branch water transport efficiency and S. giganteum exhibiting increased leaf-level water-use efficiency with increasing height. Our results reveal different adaptive strategies for the two redwoods that help them compensate for constraints associated with growing taller, and reflect contrasting environmental conditions each species faces in its native habitat.  相似文献   

15.
The importance of xylem constraints in the distribution of conifer species   总被引:10,自引:0,他引:10  
Vulnerability of stem xylem to cavitation was measured in 10 species of conifers using high pressure air to induce xylem embolism. Mean values of air pressure required to induce a 50% loss in hydraulic conductivity (φ50) varied enormously between species, ranging from a maximum of 14.2±0.6 MPa (corresponding to a xylem water potential of −14.2 MPa) in the semi-arid species Actinostrobus acuminatus to a minimum of 2.3±0.2 MPa in the rainforest species Dacrycarpus dacrydioides . Mean φ50 was significantly correlated with the mean rainfall of the driest quarter within the distribution of each species. The value of φ50 was also compared with leaf drought tolerance data for these species in order to determine whether xylem dysfunction during drought dictated drought response at the leaf level. Previous data describing the maximum depletion of internal CO2 concentration (ci) in the leaves of these species during artificial drought was strongly correlated with φ50 suggesting a primary role of xylem in effecting leaf drought response. The possibility of a trade-off between xylem conductivity and xylem vulnerability was tested in a sub-sample of four species, but no evidence of an inverse relationship between φ50 and either stem-area specific (Ka) or leaf-area specific conductivity (K1) was found.  相似文献   

16.
Abstract. Three parameters influencing the capacity for carbon accumulation, i.e. photosynthesis, respiration, and leaf extension growth, were studied in Beta vulgaris L. (sugar beet) cultured in nutrient solution containing 0.5 to 500 mol m−3 NaCl. Leaf extension growth was the parameter most sensitive to salinity: the initial rate of leaf extension and final leaf length each declined linearly with increase in external NaCl concentration. Photosynthetic O2 evolution of thin leaf slices did not decline until salinity levels reached 350 to 500 mol m−3 NaCl, while respiratory O2 consumption was not affected by salinity throughout the range. The results suggest that the influence of salinity on the capacity for carbon accumulation in B. vulgaris occurs primarily through reduction in the area of photosynthetic surface.  相似文献   

17.
The response of Phaseolus vulgaris L. cv. Contender grown under controlled environment at either ambient or elevated (360 and 700 μmol mol-1, respectively) CO2 concentrations ([CO2]), was monitored from 10 days after germination (DAG) until the onset of senescence. Elevated CO2 had a pronounced effect on total plant height (TPH), leaf area (LA), leaf dry weight (LD), total plant biomass (TB) accumulation and specific leaf area (SLA). All of these were significantly increased under elevated carbon dioxide with the exception of SLA which was significantly reduced. Other than high initial growth rates in CO2-enriched plants, relative growth rates remained relatively unchanged throughout the growth period. While the trends in growth parameters were clearly different between [CO2], some physiological processes were largely transient, in particular, net assimilation rate (NAR) and foliar nutrient concentrations of N, Mg and Cu. CO2 enrichment significantly increased NAR, but from 20 DAG, a steady decline to almost similar levels to those measured in plants grown under ambient CO2 occurred. A similar trend was observed for leaf N content where the loss of leaf nitrogen in CO2-enriched plants after 20 DAG, was significantly greater than that observed for ambient-CO2 plants. Under enhanced CO2, the foliar concentrations of K and Mn were increased significantly whilst P, Ca, Fe and Zn were reduced significantly. Changes in Mg and Cu concentrations were insignificant. In addition. high CO2 grown plants exhibited a pronounced leaf discoloration or chlorosis, coupled with a significant reduction in leaf longevity.  相似文献   

18.
Abstract. The diurnal cycling of leaf water potential (Ψleaf) in field-grown sunflower ( Helianthus annuus ) was used to investigate the cause of water deficitinduced limitation of net photosynthesis. Daily midafternoon decreases in Ψleaf of up to 1.5 MPa and in net photosynthesis of up to 50% were typical for irrigated sunflower during seed filling. These midafternoon values were lowered an additional 0.6 to 0.8 MPa by prolonged drought treatment. There was a nearly linear relationship between the decline in net photosynthesis and reductions in leaf conductance over the course of the day. Thus, it was unexpected to find that the low, midafternoon rates of photosynthesis were associated with the highest intercellular CO2 concentrations. These and other observations suggest that the daily decline in photosynthesis represents a 'down regulation' of the biochemical demand for CO2 that is coordinated with the diurnally developing need to conserve water, thus establishing a balanced limitation of photosynthesis involving both stomatal and non-stomatal factors. There were no indications that either short term (i.e. diurnal declines in Ψleaf) or long term (i.e. drought treatment) water deficits caused any damage or malfunctioning of photosynthesis. Rather, both the daily declines in photosynthesis and the nearly 25% decrease in leaf area induced by prolonged drought appeared to be well-controlled adaptive responses by field-grown sunflower plants to limited water availability.  相似文献   

19.
Xylem maturation in elongating leaf blades of tall fescue ( Festuca arundinacea ) was studied using staining and microcasting. Three distinctive regions were identified in the blade: (1) a basal region, in which elongation was occurring and protoxylem (PX) vessels were functioning throughout; (2) a maturation region, in which elongation had stopped and narrow (NMX) and large (LMX) metaxylem vessels were beginning to function; (3) a distal, mature region in which most of the longitudinal water movements occurred in the LMX. The axial hydraulic conductivity ( K h) was measured in leaf sections from all these regions and compared with the theoretical axial hydraulic conductivity ( K t) computed from the diameter of individual inner vessels. K t was proportional to K h throughout the leaf, but K t was about three times K h. The changes in K h and K t along the leaf reflected the different stages of xylem maturation. In the basal 60 mm region, K h was about 0.30±0.07 mmol s−1 mm MPa−1. Beyond that region, K h rapidly increased with metaxylem element maturation to a maximum value of 5.0±0.3 mmol s−1 mm MPa−1, 105 mm from the leaf base. It then decreased to 3.5±0.2 mmol s−1 mm MPa−1 near the leaf tip. The basal expanding region was observed to restrict longitudinal water movement. There was a close relationship between the water deposition rate in the elongation zone and the sum of the perimeters of PX vessels. The implications of this longitudinal vasculature on the partitioning of water between growth and transpiration is discussed.  相似文献   

20.
As soil and plant water status decline, decreases in hydraulic conductance can limit a plant's ability to maintain gas exchange. We investigated hydraulic limitations for Artemisia tridentata during summer drought. Water use was quantified by measurements of soil and plant water potential ( Ψ ), transpiration and leaf area. Hydraulic transport capacity was quantified by vulnerability to water stress-induced cavitation for root and stem xylem, and moisture release characteristics for soil. These data were used to predict the maximum possible steady-state transpiration rate ( E crit) and minimum leaf xylem pressure ( Ψ crit). Transpiration and leaf area declined by ~ 80 and 50%, respectively, as soil Ψ decreased to –2·6 MPa during drought. Leaf-specific hydraulic conductance also decreased by 70%, with most of the decline predicted in the rhizosphere and root system. Root conductance was projected to be the most limiting, decreasing to zero to cause hydraulic failure if E crit was exceeded. The basis for this prediction was that roots were more vulnerable to xylem cavitation than stems (99% cavitation at –4·0 versus –7·8 MPa, respectively). The decline in water use during drought was necessary to maintain E and Ψ within the limits defined by E crit and Ψ crit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号