首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used cyclization kinetics experiments and Monte Carlo simulations to determine a structural model for a DNA decamer containing the EcoRI restriction site. Our findings agree well with recent crystal and NMR structures of the EcoRI dodecamer, where an overall bend of seven degrees is distributed symmetrically over the molecule. Monte Carlo simulations indicate that the sequence has a higher flexibility, assumed to be isotropic, compared to that of a "generic" DNA sequence. This model was used as a starting point for the investigation of the effect of cytosine methylation on DNA bending and flexibility. While methylation did not affect bend magnitude or direction, it resulted in a reduction in bending flexibility and under-winding of the methylated nucleotides. We demonstrate that our approach can augment the understanding of DNA structure and dynamics by adding information about the global structure and flexibility of the sequence. We also show that cyclization kinetics can be used to study the properties of modified nucleotides.  相似文献   

2.
A 410 base-pair (bp) Sau3A restriction fragment derived from a Leishmania tarentolae kinetoplast DNA minicircle, which is known to have slower than expected electrophoretic mobilities in polyacrylamide gels, has been cloned in a plasmid and deletions from one end of the cloned segment have been constructed. Analysis of the gel electrophoretic mobility data of a large number of restriction fragments derived from the kinetoplast DNA clone and its deletion subclones has led to the conclusion that two sequences, one in the region bp 100 to 170 and the other bp 190 to 250, both numbered from one end of the 410 bp kinetoplast DNA segment, are important for the abnormal gel electrophoretic behavior of the kinetoplast DNA fragment. One common feature of these sequences is the periodic presence of short runs of A residues (3 to 6 As in each); auto-correlation analysis of these runs of A residues shows a strong harmonic component with a period around 11 bp. These results support and extend the previous analysis of Wu & Crothers (1984). The abnormal electrophoretic behavior is accentuated at low temperature and by the addition of Mg2+ to the electrophoresis buffer; addition of Na+ has the opposite effect. Insertion of sequences derived from the kinetoplast DNA fragment into nicked circular DNA causes no unexpected change in its electrophoretic mobility in agarose gel, suggesting that the 410 bp sequence, or segments of it, has no significant spatial writhe. Abnormal shifts in agarose gel mobilities are observed, however, when certain segments of the kinetoplast DNA are inserted into positively or negatively supercoiled DNA topoisomers. These results are consistent with a bent structure of the kinetoplast DNA in which the bend has zero writhe in its undistorted form but is easily distorted.  相似文献   

3.
The unusual structure of the kinetoplast DNA (kDNA) of trypanosomatids requires unique replication mechanisms. Deciphering the mechanisms that regulate the network assembly has been a challenge for many years. A better understanding of these processes was facilitated by recent studies on the fine structure of resting and replicating kDNA networks. In this review, Joseph Shlomai discusses our current view of the structural and mechanistic aspects of the assembly of kinetoplast DNA.  相似文献   

4.
Replication of kinetoplast DNA maxicircles   总被引:10,自引:0,他引:10  
S L Hajduk  V A Klein  P T Englund 《Cell》1984,36(2):483-492
The kinetoplast DNA of Crithidia fasciculata is a massive network composed of thousands of topologically interlocked circles. Most of these circles are minicircles (2.5 kb), and about 50 are maxicircles (37 kb). Previous studies showed that minicircles replicate, after release from the network, via Cairns (theta) intermediates. Here we show that maxicircles replicate, while attached to the network, by an entirely different mechanism involving rolling circle intermediates. After the network-bound maxicircle has finished replication, the branch of the rolling circle is apparently cleaved off to form a linear free maxicircle. A restriction map of the linearized free maxicircles shows that these molecules have unique termini, one of which presumably corresponds to the replication origin.  相似文献   

5.
Transcription of kinetoplast DNA minicircles   总被引:11,自引:0,他引:11  
  相似文献   

6.
7.
8.
Analysis of primary structure and organization of mitochondrial (kinetoplast) DNA of flagellates occupies a prominent place in the studies of eukaryote mitochondrial genomes, owing to its unusual organization and functioning as well as to the epidemiological role of the Trypanosomatidae family. According to contemporary notions, living zooflagellates are direct descendants of the ancestral forms that gave rise to all eukaryotic kingdoms. Hence, comparative mtDNA studies of recent Trypanosomatidae open broad prospects for phylogenetic reconstructions and analysis of presumable routes of eukaryote evolution. The structure, characteristics, and functions of Trypanosomatidae minicircular kinetoplast DNA are discussed here.  相似文献   

9.
10.
11.
The kinetoplast DNA of Trypanosoma equiperdum   总被引:4,自引:0,他引:4  
We have analyzed the kinetoplast DNA for Trypanosoma equiperdum (American Type Culture Collection 30019) and two dyskinetoplastic strains derived from it. The DNA networks from the kinetoplastic strain are made up of catenated mini-circles and maxi-circles, like the networks from the closely-related Trypanosoma brucei. The mini-circles of T. equiperdum lack the pronounced sequence heterogeneity of T. brucei mini-circles, as shown by the fragment distribution of restriction digests and by the predominance of well-matched duplexes in electron micrographs of renatured DNA. The electrophoretic analysis of kinetoplast DNA digested with various restriction endonucleases shows the maxi-circle of T. equiperdum to consist of circular DNA molecules of 8.4 x 10(6) daltons, without size or sequence heterogeneity or repetitious segments. A comparison of the sequence by restriction endonuclease fragmentation and hybridization shows extensive sequence homology. The size difference between both maxi-circles is due to the deletion of one continuous segment of 5.10(6) daltons. In the two dyskinetoplastic strains, we cannot detect DNA sequences that hybridize with kinetoplast DNA from T. brucei or from the kinetoplastic strain of T. equiperdum. In one of these strains, a 'low-density' DNA fraction contained a simple sequence DNA, cleaved by restriction endonuclease HindIII into fragments of 180 base-pairs and multimers of this. The relation of this DNA to kinetoplast DNA, if any, is unknown.  相似文献   

12.
Decatenation of kinetoplast DNA by topoisomerases   总被引:17,自引:0,他引:17  
Kinetoplast DNA is the mitochondrial DNA of trypanosomatids such as Crithidia fasciculata. This DNA is in the form of networks containing thousands of DNA circles which are apparently catenated (interlocked). Some topoisomerases, such as T4 phage topoisomerase and DNA gyrase, catalyze a decatenation of the networks to form individual covalently closed circles.  相似文献   

13.
Organized packaging of kinetoplast DNA networks   总被引:5,自引:0,他引:5  
L E Silver  A F Torri  S L Hajduk 《Cell》1986,47(4):537-543
The kinetoplast DNA (kDNA) of Trypanosoma equiperdum is organized as a complex structure of catenated circular DNA molecules. The major component of the kDNA network is the one kilobase minicircle that is present at about 10,000 copies per network. We have developed two assays to examine the structure of kDNA networks compacted in vitro with spermidine. Our results suggest that minicircles are arranged into a regular structure with an exposed domain which is DNAase I- and restriction-sensitive and a protected domain which is resistant to restriction endonucleases and DNAase I. This regularly packaged structure is dependent upon spermidine compaction and the circularity of the kDNA, but does not require supercoiled minicircles or catenated networks.  相似文献   

14.
15.
The rotational dynamics of kinetoplast DNA replication   总被引:3,自引:0,他引:3  
Kinetoplast DNA (kDNA), from trypanosomatid mitochondria, is a network containing several thousand catenated minicircles that is condensed into a disk-shaped structure in vivo. kDNA synthesis involves release of individual minicircles from the network, replication of the free minicircles and reattachment of progeny at two sites on the network periphery approximately 180 degrees apart. In Crithidia fasciculata, rotation of the kDNA disk relative to the antipodal attachment sites results in distribution of progeny minicircles in a ring around the network periphery. In contrast, Trypanosoma brucei progeny minicircles accumulate on opposite ends of the kDNA disk, a pattern that did not suggest kinetoplast motion. Thus, there seemed to be two distinct replication mechanisms. Based on fluorescence microscopy of the kDNA network undergoing replication, we now report that the T. brucei kinetoplast does move relative to the antipodal sites. Whereas the C. fasciculata kinetoplast rotates, that from T. brucei oscillates. Kinetoplast motion of either type must facilitate orderly replication of this incredibly complex structure.  相似文献   

16.
The structure of replicating kinetoplast DNA networks   总被引:6,自引:2,他引:6       下载免费PDF全文
《The Journal of cell biology》1993,123(5):1069-1079
Kinetoplast DNA (kDNA), the mitochondrial DNA of Crithidia fasciculata and related trypanosomatids, is a network containing approximately 5,000 covalently closed minicircles which are topologically interlocked. kDNA synthesis involves release of covalently closed minicircles from the network, and, after replication of the free minicircles, reattachment of the nicked or gapped progeny minicircles to the network periphery. We have investigated this process by electron microscopy of networks at different stages of replication. The distribution of nicked and closed minicircles is easily detectable either by autoradiography of networks radiolabeled at endogenous nicks by nick translation or by twisting the covalently closed minicircles with intercalating dye. The location of newly synthesized minicircles within the network is determined by autoradiography of network is determined by autoradiography of networks labeled in vivo with a pulse of [3H]thymidine. These studies have clarified structural changes in the network during replication, the timing of repair of nicked minicircles after replication, and the mechanism of division of the network.  相似文献   

17.
18.
Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function.  相似文献   

19.
Isolation and characterization of kinetoplast DNA from Leishmania tarentolae   总被引:11,自引:0,他引:11  
Kinetoplast DNA (? = 1.703 g/ml.) was isolated by preparative cesium chloride ultracentrifugation in a fixed-angle rotor from total cell DNA of Leishmania tarentolae and examined in terms of sedimentation properties, melting characteristics, and appearance in the electron microscope. It consisted of several molecular types, either free or bound together in associations of variable size: minicircles (molecular weight = 0.56 ± 0.03 × 106), catenated minicircles, “figure 8” molecules, and long molecules. The associations seem to be held together by the long molecules threading through the smaller circles and catenanes. The large associations could be broken down by sonication, DNase II-treatment, or shear forces. Minicircles, catenated dimers, trimers, and small linear fragments were separated on preparative sucrose gradients of sonicated DNA, and S20,w values were assigned to each molecular type by band sedimentation in the analytical ultracentrifuge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号