首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT.   Relationships between egg volume and an array of life-history traits have been identified for many bird species. Despite the importance of egg volume and the need for precise and accurate measurements, egg volume is usually estimated using a mathematical model that incorporates length and width measurements along with a shape variable. We developed an instrument that provides precise estimates of egg volume and can be easily used in the field. Using Clapper Rail ( Rallus longirostris ) eggs, we compared egg volumes measured using our instrument with estimates based on linear measurements. We found our instrument to be both precise and accurate. Compared with a method based on linear measurements of eggs, use of our instrument reduced variation in egg volume estimates by 1.6 cm3, approximately 8% of the volume of a Clapper Rail's egg. Further advantages of our technique include ease of use, increased accuracy of field-based volume estimates, and increased resolution of variation in egg volume estimates. In addition, our technique does not require postdata collection processing time and did not influence hatching success. Also, for Clapper Rails and similar species, our technique can be combined with other techniques (e.g., egg flotation) so that both egg volume and embryonic stage can be estimated at the same time.  相似文献   

2.
Relationships among microarthropods,fungi, and their environment   总被引:5,自引:0,他引:5  
Temporal and spatial relationships in a maple-forest soil among mycophagous microarthropods, total hyphal length, vesicular-arbuscular mycorrhizal (VAM) fungus spores, microfungus diversity, root biomass and some abiotic variables (temperature, water content, pH, organic matter content) were investigated. Samples were obtained from spring 1991 to winter 1992 at four soil depths. Canonical correspondence analysis was used to analyze the data. Four species of sporulating VAM fungi were identified, along with 23 species of mites and springtails, 9 of which were common. Hyphal length, VAM fungus spores, and soil animals peaked in spring and autumn. Canonical correspondence analysis suggests that animal abundance and success in the soil is dependent on a number of environmental variables. The most important variables that influence microarthropod community structure are: (i) temperature, (ii) water content, (iii) pH, (iv) total length of fungal hyphae, and (v) diversity of darkly-pigmented fungi. However, the relative importance of these variables changes with increasing soil depth. We have also shown a relationship between arthropod populations and their food supply under field conditions, a phenomenon that has been demonstrated previously under controlled laboratory conditions.  相似文献   

3.
Soil biodiversity has been recognized as a key feature of ecosystem functioning and stability. However, soil biodiversity is strongly impaired by agriculture and relatively little is known on how and at what spatial and temporal scales soil biodiversity is restored after the human disturbances have come to an end. Here, a multi-scale approach was used to compare diversity patterns of soil mites and nematodes at four stages (early, mid, late, reference site) along a secondary succession chronosequence from abandoned arable land to heath land. In each field four soil samples were taken during four successive seasons. We determined soil diversity within samples (α-diversity), between samples (β-diversity) and within field sites (γ-diversity). The patterns of α- and γ-diversity developed similarly along the chronosequence for oribatid mites, but not for nematodes. Nematode α-diversity was highest in mid- and late-successional sites, while γ-diversity was constant along the chronosequence. Oribatid mite β-diversity was initially high, but decreased thereafter, whereas nematode β-diversity increased when succession proceeded; indicating that patterns of within-site heterogeneity diverged for oribatid mites and nematodes. The spatio-temporal diversity patterns after land abandonment suggest that oribatid mite community development depends predominantly on colonization of new taxa, whereas nematode community development depends on shifts in dominance patterns. This would imply that at old fields diversity patterns of oribatid mites are mainly controlled by dispersal, whereas diversity patterns of nematodes are mainly controlled by changing abiotic or biotic soil conditions. Our study shows that the restoration of soil biodiversity along secondary successional gradients can be both scale- and phylum-dependent.  相似文献   

4.
Soil abiotic factors are considered to be important in determining the distribution of ectomycorrhizal (ECM) fungal species; however, there are few field data to support this. Here, we relate ECM species distributions to changes in soil chemistry along a short (90-m), natural nutrient gradient. The ECM community was characterized, using morphological and molecular techniques, in soil samples collected at 10-m intervals. There were pronounced changes in ECM fungal community structure along the transect, with many taxa showing discrete distributions. Although there was a change of host from Pinus to Picea along the gradient, host-specific fungi did not account for the observed change in community structure. Ordination analyses showed that community structure was strongly correlated with soil characteristics, in particular extractable ammonium and base saturation. However, autocorrelation among soil parameters makes it difficult to isolate the effects of individual parameters. The distinctive changes in soil and vegetation along the transect used in this study provided an exceptional opportunity to examine the local-scale impact of natural spatial heterogeneity on an ECM fungal community.  相似文献   

5.
The spatial distribution of lateral roots in the soil is an important factor influencing water and nutrient absorption. However, lateral root development has rarely been studied in detail, especially concerning morphological variations, mainly because such examinations are both time-consuming and laborious. We measured the number and length of all first-order lateral roots on the seminal roots of maize ( Zea mays L.) and wheat ( Triticum aestivum L.) to investigate variations in linear frequency and length. This was conducted with reference to species, root types, and positions on their parental roots. Although the linear frequency of first-order lateral roots varied along the root axis in maize, the variation was not as great as in wheat. Variations were found in the length of lateral roots among plant species, root types, and positions on their parental root axes. Such variations in the length of lateral roots along the root axes were caused by differences in the elongation period of lateral roots rather than those in the elongation rate. Additionally, we examined the effects of soil drying on lateral root development. As a response to soil drying, the length of lateral roots varied depending on the period they were placed under the stressed condition. Moderate soil drying could also accelerate the elongation of some lateral roots. Variations in the length of first-order lateral roots and their responses to soil drying could help distribute their tips thoroughly throughout the soil. This might be adaptive for water absorption for root system development when resources are limited.  相似文献   

6.
An instrument which fits on the stage of a CTS M6100 stereoscopic microscope and provides a continuous field of view for roll tube cultures is described. It has been used to facilitate the rapid counting of colonies on soil extract agar.  相似文献   

7.
Zhuang  J.  Yu  G.R.  Nakayama  K. 《Plant and Soil》2001,235(2):135-142
Root length density is an important parameter in crop growth simulation and in evaluating consequences of root pattern on crop water and nutrient uptake. In this study, a scaling model was presented for estimating the profile distribution of root length density of maize (Zea mays L.). The model inputs are root length data of a reference profile and bulk densities of soil layers, as well as root length data in the first soil layer of a field profile to be investigated. Using the root length data of 10 soil profiles investigated over 2 years, the model was examined. The results show that the proposed scaling approach is effective in estimating the root length density of each layer of soil in the field profile. The relative root mean square error (RRMSE) of the developed scaling model was 25.28%, while that of the traditional exponential model was 39.53%. The scaling approach would facilitate determination of heterogeneous distributions of root length densities in the field.  相似文献   

8.
Research was conducted to determine if there is a correlation between the data gathered by field analytical instruments in analyzing soil contaminated with diesel fuel. One instrument was equipped with a flame ionization detector (FID) and the other a photoionization detector (PID). The results showed that the concentration readings of the PID and FID displayed a linear relationship for soil recently contaminated with diesel fuel. However, for soil containing weathered diesel fuel in the field, a logarithmic relationship between the PID and FID readings was displayed. It was also determined by laboratory experimentation that the PID and FID readings both exhibited log-linear decreases over time for uncovered diesel fuel-contaminated soil. It was concluded that the PID and FID can both individually be used to evaluate soil contaminated by diesel fuel and might be interchangeable depending on the needs of the researcher.  相似文献   

9.
Davies  Angus  Waite  Stephen 《Plant Ecology》1998,136(1):27-39
The relationships between the composition of the soil seed bank, the field layer vegetation, and the scrub canopy were investigated along a 69 m transect, grading from incipient woodland, through scrub, into intensively rabbit-grazed calcareous grassland. The results are used to assess the persistence of species associated with open calcareous grassland in the seed bank under developing scrub. Scrub age, composition and density, changed along the transect from the woodland to open grassland. A total of 35 forb and grass species were found in the field layer. The pattern evident in the scrub layer was also reflected in the herbaceous vegetation. The field layer in the most closed portion of the transect, where the scrub was oldest, was dominated by shade-tolerant species normally associated with woodland habitats. The abundance of these species decreased along the transect as the scrub age declined, and the field layer became increasingly dominated by species typical of open grassland. A total of 47 species germinated from the seed bank. Few species were recorded in the seed bank along the entire length of the transect. Overall, the seed bank was dominated by Hypericum perforatum and Centaurium erythraea, which accounted for 38.2% and 28.6% of emerging seedlings respectively. As with a number of similar studies, the composition of the seed bank had a low correspondence with the composition of the field layer vegetation. The results also emphasise that the composition of the seed bank can be viewed as an ecological palimpsest, with germinable seed of species from each stage of the old-field succession occurring in the soil. The seed bank is an important component in the re-vegetation of an area after disturbance such as scrub removal. This study supports the findings of previous research in showing that relatively few characteristic calcareous grassland species form persistent seed banks. The soil seed bank would therefore appear to be of limited value in the restoration of such grassland following scrub removal.  相似文献   

10.
Miralles  D.J.  Slafer  G.A.  Lynch  V. 《Plant and Soil》1997,197(1):79-86
The effects of Rht alleles on root growth and distribution in isogenic lines of spring wheat (Triticum aestivum L.) are described under different environmental conditions. Above-ground biomass, root length, root dry-weight and their distribution along the soil profile were measured by destructive sampling for growth of aerial biomass and extraction of soil cores containing roots. Field experiments were conducted under non-limiting water and nutritional conditions during two consecutive years, using an early and a late sowing date each year.Dwarfing genes significantly reduced plant height and above-ground biomass at anthesis. In addition, stem mass ratio also was reduced with increases in the allelic dosage. Conversely, total root length and root dry-weight per unit area at anthesis were increased with decreased plant height, therefore, root mass ratio tended to be negatively correlated with plant height. Differences in distribution of root length and root dry-weight through the soil profile among lines were largely confined to the upper soil layers (i.e. the top 30 cm).Differences in root dry-weight were more important than in root length, so that the dwarf line had the highest root mass per unit root length. Furthermore, a significant positive correlation between the root mass ratio and stem mass per unit stem length was found. It is suggested that increases in root mass per unit root length associated with Rht alleles are evidencing a surplus of photoassimilates during stem elongation which are used for thickening the roots due to the lack of alternative sinks. Agronomic implications of this effect are discussed.  相似文献   

11.
An analysing flow cytometer, the optical plankton analyser (OPA), is presented. The instrument is designed for phytoplankton analysis, having a sensitivity comparable with commercially available flow cytometers, but a significantly extended particle size range. Particles of 500 microns in width and over 1,000 microns in length can be analysed. Sample flow rates of up to 55 microliters/s can be used. Also, the dynamic range of the instrument is significantly increased for particles larger than about 5 microns. The optics, hydraulics, and electronics of the instrument are described, including the best form for a low fluid shear cuvette. The new pulse quantification technique we call digital integration is presented. This technique is essential for the instrument to handle both short and very long particles with a large dynamic range. Test measurements demonstrating particle size range and dynamic range are presented. Dynamic ranges of 10,000 and 100,000 were typically observed, measuring field samples with Microcystis aeruginosa colonies, whereas one sample showed a dynamic range of 10(6). A simple method for interpretation of time of flight (TOF) data in terms of particle morphology is presented. The specifications of the instrument are given.  相似文献   

12.
Spangenberg  A.  Cecchini  G.  Lamersdorf  N. 《Plant and Soil》1997,196(1):59-70
The performance of a micro soil solution sampling device was tested in a laboratory examination and in a field experiment. The instrument allows detection of temporal and spatial changes in soil solution chemistry at a spatially high resolution. The flexible tube of the suction cell is made of a porous polymer with a diameter of 2.3 mm. To achieve more stability and to minimize disturbance of the instrument during field installation, the original device was modified by embedding the suction cell in a stainless steel and pressure absorbing corpus. During a laboratory test the new sampling system was compared to ceramic P-80 suction cells. Solution samples taken with the new device adapted more quickly to the given concentrations compared to the ceramic suction cells. In a field test, micro samplers were implanted in an existing soil solution monitoring plot, equipped with standard ceramic samplers. Bi-weekly sampling using the micro cells indicated high temporal and spatial variation, and in June 1995 it was possible, to identify a distinct nitrification. However, in a statistical comparison of the entire sampling period and respective sub-sampling areas the two sampler types indicated identical concentration ranges for nitrate. It is concluded that the new micro samplers can help to identify processes in soils which may cause short-term changes in the soil solution chemistry, whereas the standard sampling technique with ceramic cells seems to be still a suitable tool if long-term mean soil solution concentrations are to be measured.  相似文献   

13.
Ben-Gal  Alon  Shani  Uri 《Plant and Soil》2002,239(1):9-17
Lysimeters are used to study and monitor water, fertilizers, salts and other contaminants and are particularly valuable in transpiration and evapotranspiration research. Saturation at the soil bottom boundary in a lysimeter is inherent to its design. A drainage extension made of porous media with high hydraulic conductivity and substantial water holding capacity was devised to extend the lysimeter in order to produce soil moisture conditions mimicking those in the field. Design criteria that assure equal discharge in the soil and in the highly conductive drain (HCD) were established and formulated. Desired matric head at the lysimeter base is determined by HCD extension length. Its value can be manipulated and can range between saturation and the soil's field capacity. Conditions where the HCD is not limiting to flow are obtained through selection of the appropriate cross sectional area ratio between the soil in the lysimeter and the HCD. The validity of these criteria was confirmed with 200 l working lysimeters in the field, with and without plants, and with detailed flow tests utilizing smaller (15 l) lysimeters. Comparison of computed and measured matric head and leachate volume indicates that the proposed method can serve to maintain conditions similar to those in the field.  相似文献   

14.
Roots modify the properties of soil in their immediate vicinity. Individually, fine roots (<1 mm in diameter) have little effect on soil properties, but this is offset by the fact that they make up most of a plant’s total root length. Roots growing near the soil surface may influence soil detachment. Slope conditions are also known to influence root growth. A field study conducted in a small watershed of Northern Lao People’s Democratic Republic (PDR) during the 2005 rainy season assessed putative interactions between shallow fine roots, slope angle and soil detachment under three land uses: shifting cultivation, fallow and tree plantations. We used auger sampling and root windows to measure root length density and 1-m2 microplots to monitor water infiltration, runoff and soil detachment. Annual crops and plantation trees did not explore shallow soil horizons as thoroughly as fallow species. Under both crop and fallow, RLD in the top 5 cm decreased as slope increased. This pattern could be linked, either as a cause or a consequence, to slope-related changes in infiltration regimes. In contrast, no clear relation between fine root development and soil detachment was found.  相似文献   

15.
BACKGROUND AND AIMS: Fractal analysis allows calculation of fractal dimension, fractal abundance and lacunarity. Fractal analysis of plant roots has revealed correlations of fractal dimension with age, topology or genotypic variation, while fractal abundance has been associated with root length. Lacunarity is associated with heterogeneity of distribution, and has yet to be utilized in analysis of roots. In this study, fractal analysis was applied to the study of root architecture and acquisition of diffusion-limited nutrients. The hypothesis that soil depletion and root competition are more closely correlated with a combination of fractal parameters than by any one alone was tested. MODEL: The geometric simulation model SimRoot was used to dynamically model roots of various architectures growing for up to 16 d in three soil types with contrasting nutrient mobility. Fractal parameters were calculated for whole roots, projections of roots and vertical slices of roots taken at 0, 2.5 and 5 cm from the root origin. Nutrient depletion volumes, competition volumes, and relative competition were regressed against fractal parameters and root length. KEY RESULTS: Root length was correlated with depletion volume, competition volume and relative competition at all times. In analysis of three-dimensional, projected roots and 0 cm slices, log(fractal abundance) was highly correlated with log(depletion volume) when times were pooled. Other than this, multiple regression yielded better correlations than regression with single fractal parameters. Correlations decreased with age of roots and distance of vertical slices from the root origin. Field data were also examined to see if fractal dimension, fractal abundance and lacunarity can be used to distinguish common bean genotypes in field situations. There were significant differences in fractal dimension and fractal abundance, but not in lacunarity. CONCLUSIONS: These results suggest that applying fractal analysis to research of soil exploration by root systems should include fractal abundance, and possibly lacunarity, along with fractal dimension.  相似文献   

16.
In this study, we explore two mycorrhizal groups during development of riparian soils along a freely-flowing river. We provide the first documentation of a shift in abundance between arbuscular mycorrhizae and ectomycorrhizae during floodplain succession. We used a chronosequence spanning 0–70 yr along a river in northwestern Montana, USA, to test the hypothesis that abundance of arbuscular mycorrhizal fungi (AMF) is greatest in early stages of soil development, and abundance of ectomycorrhizal fungi (ECMF) is greatest later in floodplain succession. We also measured the AMF-mediated process of formation of soil aggregates during site development. AMF colonization of the dominant tree (black cottonwood, Populus trichocarpa ) remained low (<5%), while AMF colonization of understory species was high (45–90%), across the chronosequence. Mycorrhizal inoculum potential (MIP) and hyphal length of AMF in soil peaked within the first 13 yr of succession and then declined. No single variable significantly correlated with AMF abundance, but AMF tended to decline as litter and soil organic matter increased. Density of ectomycorrhizal root tips in soil increased linearly throughout the chronosequence, and ectomycorrhizal colonization of cottonwood roots increased rapidly in early stages of succession. These patterns suggest that ECMF are not limited by dispersal, but rather influenced by abundance of host plants. Formation of water stable aggregates increased rapidly during the first third of the chronosequence, which was the period of greatest AMF abundance in the soil. The peak in AMF infectivity and hyphal length during early succession suggests that regular flooding and establishment of new sites promotes AMF abundance in this ecosystem. Regulation of rivers that eliminates creation of new sites may reduce contributions of AMF to riparian areas.  相似文献   

17.
Gazey C  Abbott LK  Robson AD 《Mycorrhiza》2004,14(6):355-362
Arbuscular mycorrhizal (AM) fungi occur in all agricultural soils but it is not easy to assess the contribution they make to plant growth under field conditions. Several approaches have been used to investigate this, including the comparison of plant growth in the presence or absence of naturally occurring AM fungi following soil fumigation or application of fungicides. However, treatments such as these may change soil characteristics other than factors directly involving AM fungi and lead to difficulties in identifying the reason for changes in plant growth. In a glasshouse experiment, we assessed the contribution of indigenous AM fungi to growth of subterranean clover in undisturbed cores of soil from two agricultural field sites (a cropped agricultural field at South Carrabin and a low input pasture at Westdale). We used the approach of estimating the benefit of AM fungi by comparing the curvature coefficients ( C) of the Mitscherlich equation for subterranean clover grown in untreated field soil, in field soil into which inoculum of Glomus invermaium was added and in soil fumigated with methyl bromide. It was only possible to estimate the benefit of mycorrhizas using this approach for one soil (Westdale) because it was the only soil for which a Mitscherlich response to the application of a range of P levels was obtained. The mycorrhizal benefit ( C of mycorrhizal vs. non-mycorrhizal plants or C of inoculated vs. uninoculated plants) of the indigenous fungi corresponded with a requirement for phosphate by plants that were colonised by AM fungi already present in the soil equivalent to half that required by non-mycorrhizal plants. This benefit was independent of the plant-available P in the soil. There was no additional benefit of inoculation on plant growth other than that due to increased P uptake. Indigenous AM fungi were present in both soils and colonised a high proportion of roots in both soils. There was a higher diversity of morphotypes of mycorrhizal fungi in roots of plants grown in the Westdale soil than in the South Carrabin soil that had a history of high phosphate fertilizer use in the field. Inoculation with G. invermaium did not increase the level of colonisation of roots by mycorrhizal fungi in either soil, but it replaced approximately 20% of the root length colonised by the indigenous fungi in Westdale soil at all levels of applied P. The proportion of colonised root length replaced by G. invermaium in South Carrabin soil varied with the level of application of P to the soil; it was higher at intermediate levels of recently added soil P.  相似文献   

18.
冬小麦根系各种参数垂直分布实验研究   总被引:17,自引:0,他引:17  
本文根据田间实测资料研究了冬小麦根系各种参数(长度、重量、活性表面和根径)的垂直分布。结果表明,在所观测地区的土壤条件下,冬小麦根系的长度、重量、表面积和体积随深度呈指数分布,而累积根系的长度、重量和表面积随深度呈双曲线型分布。根据作者的观测资料和国内外其它观测资料分析研究表明,对于不同土壤,根区各层土壤中累计根重及根长的百分比随相对深度的变化都符合下列双曲线函数形式:这一研究结果可为根系生态研究和作物对水分吸收的模拟工作提供参考。  相似文献   

19.
Root growth of potato (Solanum tuberosum L.) is sensitive to soil conditions. A reduced root system size can result in reduced uptake of water and/or nutrients, leading to impaired crop growth. To understand the mechanisms by which soil conditions affect crop growth, study of temporal and spatial development of roots is required.In field experiments, effects of soil temperature, soil compaction and potato cyst nematodes (Globodera pallida) on root growth of potato cultivars were studied using two methods: core sampling and vertically oriented minirhizotrons.Minirhizotrons showed relatively more roots in deeper soil layers than core sampling, probably because of preferential root growth along the tube. Spatial distribution of roots should therefore be analysed by core sampling.To eliminate differences in spatial distribution, total root systems as measured by both methods were compared. Nematodes, cultivars and time did not affect the relationship between both methods. Soil compaction, however, affected it because of a strong response of root length in bulk soil and small differences in root number against the minirhizotron, suggesting that soil coring has to be used to study effects of different bulk densities.With both methods, sequential measurements of roots give the net effect of root growth and decay. Data on root turnover can only be obtained with minirhizotrons by comparing video recordings of different dates. Other information obtained with minirhizotrons is the average orientation of roots. Moreover, the minirhizotron method has the advantage of demanding less labour.  相似文献   

20.
We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号