首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A novel culture method has been developed to study the interaction of epithelial cells in the absence of a solid substratum. Starting with either a single cell suspension or aggregates, cells were floated at the interface of air and liquid culture medium. Two epithelial cell lines have been studied in this system: Madin-Darby canine kidney cells (MDCK), and a rat bladder tumor cell line (NBT-II). Starting with a single cell suspension of MDCK, the floating cells coalesced in 24 h into sheets of cells. The cells were morphologically polarized with the apical surface facing the liquid medium. Domes were observed regularly in these sheets of cells. NBT-II cells migrated actively from aggregates at the air-liquid interface. In this floating culture, NBT-II cells produced extensive cell processes similar to those seen in cells grown on a solid surface. Because cells at the air-liquid interface lack a solid substratum for adhesion, cell membrane processes such as lamellapodia, retraction fibers, pseudopods, and long, intercellular connections can only exert a tension equal to or less than the surface tension of the liquid. Dimethyl sulfoxide 2% stimulated desmosome formation in floating NBT-II cells, resulting in a cribriform pattern in the sheet of cells. This method of interface can lead to new understanding of morphogenesis of epithelial cells, and the mechanism, of cell motility and formation of cell processess. This research was supported by research grant CA14137 from the National Institutes of Health, Bethesda, MD, and in part by the W. W. Smith Charitable Trust, Rosemont, PA  相似文献   

2.
Actin cytoskeletal reorganization is essential for tumor cell migration, adhesion, and invasion. Cofilin and actin-depolymerizing factor (ADF) act as key regulators of actin cytoskeletal dynamics by stimulating depolymerization and severing of actin filaments. Cofilin/ADF are inactivated by phosphorylation of Ser-3 by LIM kinase-1 (LIMK1) and reactivated by dephosphorylation by Slingshot-1 (SSH1) and -2 (SSH2) protein phosphatases. In this study, we examined the roles of cofilin/ADF, LIMK1, and SSH1/SSH2 in tumor cell invasion, using an in vitro transcellular migration assay. In this assay, rat ascites hepatoma (MM1) cells were overlaid on a primary-cultured rat mesothelial cell monolayer and the number of cell foci that transmigrated underneath the monolayer in the presence of lysophosphatidic acid (LPA) was counted. The knockdown of cofilin/ADF, LIMK1, or SSH1/SSH2 expression by small interfering RNAs (siRNAs) significantly decreased the LPA-induced transcellular migration of MM1 cells and their motility in two-dimensional culture. Knockdown of LIMK1 also suppressed fibronectin-mediated cell attachment and focal adhesion formation. Our results suggest that both LIMK1-mediated phosphorylation and SSH1/SSH2-mediated dephosphorylation of cofilin/ADF are critical for the migration and invasion of tumor cells and that LIMK1 is involved in the transcellular migration of tumor cells by enhancing both adhesion and motility of the cells.  相似文献   

3.
Quantum dot-based cell motility assay   总被引:5,自引:0,他引:5  
Motility and migration are measurable characteristics of cells that are classically associated with the invasive potential of cancer cells, but in vitro assays of invasiveness have been less than perfect. We previously developed an assay to monitor cell motility and migration using water-soluble CdSe/ZnS nanocrystals; cells engulf the fluorescent nanocrystals as they crawl across them and leave behind a fluorescent-free trail. We show here that semiconductor nanocrystals can also be used as a sensitive two-dimensional in vitro invasion assay. We used this assay to compare the behavior of seven different adherent human cell lines, including breast epithelial MCF 10A, breast tumor MDA-MB-231, MDA-MB-435S, MCF 7, colon tumor SW480, lung tumor NCI H1299, and bone tumor Saos-2, and observed two distinct behaviors of cancer cells that can be used to further categorize these cells. Some cancer cell lines demonstrate fibroblastic behaviors and leave long fluorescent-free trails as they migrate across the dish, whereas other cancer cells leave clear zones of varying sizes around their periphery. This assay uses fluorescence detection, requires no processing, and can be used in live cell studies. These features contribute to the increased sensitivity of this assay and make it a powerful new tool for discriminating between non-invasive and invasive cancer cell lines.  相似文献   

4.
Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin-Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin-Crk complex in the collagen-induced cell motility.  相似文献   

5.
Summary Confronting cultures of precultured embryonic chick heart fragments (PHF) with aggregates of malignant cells in vitro have been shown to be relevant for a number of aspects of tumor invasion in vivo. Preculture of the heart fragments, formation of cell aggregates and subsequent culture of confronting pairs have so far been done only in serum-containing culture media. We describe here confronting cultures of PHF with invasive MO4 mouse cell aggregates or noninvasive MDCK dog kidney cell aggregates in serum-free media. Heart fragments precultured in the absence of serum seemed to be necrotic after confronting culture in serum-free media. However, preculturing in media supplemented with 10% fetal bovine serum allowed us to do subsequent confronting cultures in absence of serum. Cell aggregates were also prepared in serum-containing medium. MO4 cells occupied and replaced the heart tissue within 4 d, whereas MDCK cells remained at the periphery, of the PHF. This indicates that serum-free confronting cultures can discriminate between invasive and noninvasive cells. The viability of individual PHF and cell aggregates cultured in the same way as in confrontations was ascertained by histology and by explantation and postculturing on a solid tissue culture substrate. Growth of the cultures was smaller in serum-free media than in media supplemented with 10% fetal bovine serum. The main advantage of serum-free culture conditions in vitro is the elimination of the influence of serum components on invasion, and the ability to examine the effect on invasion of drugs that are, susceptible to inactivation by serum. This work was supported by the Fonds van de Sport Vereniging tegen de Kanker, Brussels, Belgium, and the Fonds voor Geneeskundig Wetenschappelijk Onderzoek Brussels, Belgium  相似文献   

6.
de la Monte SM  Lahousse SA  Carter J  Wands JR 《BioTechniques》2002,33(1):98-100, 102, 104 passim
Directional motility and invasion assays are largely based on the use of Boyden chambers or Transwell culture inserts in which porous membranes separate seeded cells from a chemotactic factor supplied in the medium outside the chamber. The major obstaclefor most currently available assays is that they lack a sensitive, easy, and reliable method of quantifying the nonmotile cell populations. Failure to accountfor all cells within the assay chamber prohibits the determination of percentages of migrated cells. Here we describe an ATP luminescence-based motility-invasion (ALMI) assay that circumvents this problem, enabling investigators to quantify directional cell migration or invasiveness easily. The ALMI assay is based on the detection of ATP in viable cells harvested from inert surfaces that do not generate background signals. We demonstrate how the ALMI assay can be used to assess the effects of various experimental conditions such as growth factor stimulation and ethanol exposure on cell migration. In addition, precoating the membranes with extracellular matrix molecules enabled the measurement of the cell invasion. In conclusion, the ALMI assay provides a reliable and flexible method to quantify cell motility and invasiveness using a luminescence microplate reader.  相似文献   

7.
R Tchao 《In vitro》1980,16(5):407-414
The terminal differentiation, keratinization, of a rat bladder tumor cell line, NBT II, occurred in multicellular aggregates. After aggregation, these cells did not undergo a round of mitosis before keratinization. 5-Bromodeoxyuridine added to the monolayer cell culture 2 days before aggregation completely prevented this differentiation; it was ineffective when added at the time of cell aggregation. Vitamin A prevented the keratinization of NBT II cells in aggregates but did not inhibit aggregate formation; it enhanced the number of cells engaged in DNA synthesis. This model appears to be very useful for analyzing the mechanisms of terminal differentiation and its modulation by vitamin A in tumor cells.  相似文献   

8.
MXR7 is a cell-surface protein and highly expressed in hepatocellular carcinoma(HCC). The aim of this study is to determine the expression profile of MXR7 in HCC and investigate the influence of MXR7 on invasion and metastasis of HCC cells. For this purpose, immunohistochemical assay was used to identify the differential expression of MXR7 in 94 HCC specimens. Expression of MXR7 in 4 pairs of HCC and portal vein tumor thrombus(PVTT) was also tested. The motility of HCC cells were characterized by transwell migration and matrigel invasion assays. In vivo metastasis potential was determined via tail vein injection assay.Moreover, compared with noninvasive HCC tumors or human HCC cell lines with low metastatic potential, invasive HCC samples and HCC cell lines with high metastatic potential exhibited higher MXR7 expression. Furthermore, forced expression of MXR7 in SMMC-7721 promoted cell proliferation, migration and invasion in vitro and accelerated tumor growth and metastasis in vivo. Conversely, knockdown of MXR7 expression in HuH7 cells inhibited proliferation and motility of cells. Mechanically,overexpression of MXR7 promoted epithelial-mesenchymal transition(EMT) progress, and MXR7 depletion repressed the EMT phenotype. In conclusion, MXR7 is a mediator of EMT and metastasis in HCC and may serve as a novel therapeutic target.  相似文献   

9.
NBT-II cells on collagen-coated substrates move rapidly and persistently, maintaining a semi-circular shape with a large lamellipodium, in a manner similar to fish keratocytes. The inhibitor of phospholipase D (PLD), n-butanol, completely blocked the migration and disturbed the characteristic localization of actin along the edge of lamellipodia. To investigate the functional difference between the two isozymes of PLD (PLD1 and PLD2), we transfected NBT-II cells with vectors expressing shRNA to deplete PLD1 or PLD2. Depletion of both PLD1 and 2 by RNA interference reduced the velocity of the migration, but depletion of PLD2 inhibited motility more severely than that of PLD1. Furthermore, GFP-PLD2 was localized to the protruding regions of lamellipodia in migrating cells. Thus, PLD is essential for the maintenance of keratocyte-like locomotion of NBT-II cells, presumably by regulating the actin cytoskeleton.  相似文献   

10.
The clinical complications derived from metastatic disease are responsible for the majority of all breast cancer related deaths. Since cell migration and invasion are a prerequisite for metastasis their assessment in patient cancer cells in vitro may have prognostic value for the tumor''s metastatic capacity. We employed real-time cell analysis (RTCA) on the xCELLigence DP system to determine in vitro motility of patient-derived primary human breast cancer epithelial cells (HBCEC). Initially, the RTCA assay was validated using established human breast cancer cell lines with either an invasive (MDA-MB-231, MDA-MB-435s) or a non-invasive phenotype (MCF-7, MDA-MB-468), and primary NSCLC cells (Tu459). Previous standard assays of cell migration/invasion revealed that only MDA-MB-231, −435s, and Tu459 cells exhibited spontaneous and TGF-β1-stimulated migration and invasion through a Matrigel barrier. In the present study, the TGF-β1-stimulated activities could be blocked by SB431542, a potent kinase inhibitor of the TGF-β type I receptor ALK5. Application of the RTCA assay to patient-derived tumor cells showed that 4/4 primary HBCEC and primary NSCLC cells, but not normal human mammary epithelial cells (HMEC), displayed high spontaneous migratory and invasive activity which correlated with higher MMP-2 expression and uPA protein levels in HBCEC compared to HMEC. Upon treatment with TGF-β1, HBCEC exhibited morphologic and gene regulatory alterations indicative of epithelial-to-mesenchymal transition. However, exclusively the invasive but not the migratory activity of HBCEC was further enhanced by TGF-β1. This indicates the requirement for molecular, e.g. integrin interactions with Matrigel components in HBCEC in order to become responsive to pro-invasive TGF-β effects. Together, these results show for the first time that tumorigenic HBCEC but not normal HMEC possess a strong basal migratory as well as a basal and TGF-β1-inducible invasive potential. These findings qualify the RTCA assay as an in vitro migration/invasion testing system for patient-specific primary breast cancer cells.  相似文献   

11.
Early prediction of metastatic breast cancer is important for improvement of prognosis and survival rate. The present study aimed to identify secreted protein biomarkers for detection of invasive breast cancer. To this end, we performed a comparative proteomic analysis by a combination of 2DE and MALDI‐TOF MS analysis of conditioned media from invasive H‐Ras MCF10A human breast epithelial cells and noninvasive MCF10A and N‐Ras MCF10A cells. We identified a list of 25 proteins that were strongly detected in media of H‐Ras MCF10A and focused on annexin II, which was shown to be involved in cell motility. Invasive triple‐negative human breast carcinoma cells, Hs578T, and MDA‐MB‐231, showed increased levels of annexin II in media, demonstrating that secretion of annexin II correlated well with the invasive phenotype of cells. We demonstrated a crucial role of annexin II in breast cell invasion/migration and actin cytoskeleton reorganization required for filopodia formation. Annexin II levels in the plasma samples and breast cancer tissues of breast cancer patients were significantly higher than those of normal groups, providing a clinical relevance to our in vitro findings. Taken together, we identified annexin II as a novel secretory biomarker candidate for invasive breast cancer, especially estrogen receptor‐negative breast cancer.  相似文献   

12.
Cell dissociation and acquisition of cell motility are major events in morphogenesis, wound repair, and cancer invasion and metastasis. We have used the NBT-II bladder carcinoma cell line as a model system to study the mechanisms of these events. Upon exposure to acidic fibroblast growth factor (aFGF), NBT-II cells undergo morphological changes that resemble those described in epithelial-mesenchymal transitions, i.e., dissociation of some or all polygonal epithelial cells and their transformation into motile, fibroblastic-like cells. The disruption of intercellular contacts, which accompanies cell dissociation and acquisition of motility, is correlated with a redistribution of E-cadherin, a Ca(2+)-dependent cell adhesion molecule, over the entire cell surface and within the cytoplasm. However, these modifications are not accompanied by a reduction of the intercellular adhesiveness or a loss of E-cadherin expression. Moreover, the formation of intercellular contacts between fibroblastic-like NBT-II cells results in the relocation of epithelial cadherin (E-cadherin) immunoreactivity on lateral membranes, but is not sufficient to abrogate cell motility. Finally, the overexpression of E-cadherin by NBT-II cells stably transfected with a plasmid containing the mouse E-cadherin cDNA does not impair the scattering effect of aFGF, indicating that high levels of E-cadherin expression do not prevent cells from disrupting their intercellular connections. Altogether, these results suggest that the scattering activity of aFGF is not mediated by direct modulations of E-cadherin expression.  相似文献   

13.
Induced migration of tumor cells is generally considered to be one critical step in cancer progression to the invasive and metastatic stage. The implicit caveat of studies that show this is that other, unknown, signaling pathways and biophysical events are actually the operative rate-limiting steps, and not motility per se. Thus, to examine the hypothesis that motility is a single, but overall rate-limiting function required for invasion, disparate motility processes need be blocked with concordant effects on tumor invasion. Recently, we and others have described two signaling pathways that are critical to growth factor-induced motility but not mitogenesis. The key molecular switches are phospholipase C-gamma (PLCgamma) and calpain for cytoskeletal reorganization and rear detachment, respectively. We examined this hypothesis in a highly invasive tumor, bladder carcinoma. Three different human tumor cell lines, 253J-B-V, UMUC and T-24, were tested for invasiveness in vitro by transmigration of a Matrigel barrier. Inhibiting PLCgamma with the pharmacologic agent U73122 or the molecular dominant-negative PLCz construct reduced both invasiveness and motility. The same was noted when calpain was blocked using calpain inhibitor I (ALLN). These results demonstrate that one interventional target for limiting invasion is not necessarily an individual motility pathway but rather cell migration per se.  相似文献   

14.
Phosphatidylcholine synthesis in type II pneumocytes is stimulated by inclusion of phosphatidylglycerol and other phospholipids in the culture medium (Gilfillan, A.M., Chu, A.J. and Rooney, S.A. (1984) Biochim. Biophys. Acta 794, 269-273). We have now examined the effect of phosphatidylglycerol in the medium on enzymes of de novo phosphatidylcholine synthesis in adult rat type II cells. Activities of choline kinase, cholinephosphate cytidylyltransferase and cholinephosphotransferase in homogenates of whole lung and type II cells were generally similar. Phosphatidate phosphatase activity in type II cells, however, was only 16% that in whole lung. Addition of phosphatidylglycerol (10 microM) to the culture medium had no effect on choline kinase, cholinephosphotransferase or phosphatidate phosphatase activities in type II cells but it increased the activity of cholinephosphate cytidylyltransferase by 56%. Since it is known that cholinephosphate cytidylyltransferase is stimulated in vitro by addition of phospholipids to the assay mixture, we also measured its activity in the presence of sufficient phosphatidylglycerol (1.1 mM) to maximally stimulate in vitro. Even under these conditions cholinephosphate cytidylyltransferase activity in type II cells cultured in the presence of phosphatidylglycerol was 32% greater than in control cells. These data show that the stimulatory effect of phospholipid in the culture medium on phosphatidylcholine synthesis in type II cells is mediated by increased cholinephosphate cytidylyltransferase activity. The mechanism of increased cytidylyltransferase activity remains to be elucidated but it is not due to direct in vitro activation by the phospholipid.  相似文献   

15.
Differential regulation of cell motility and invasion by FAK   总被引:41,自引:0,他引:41  
Cell migration and invasion are fundamental components of tumor cell metastasis. Increased focal adhesion kinase (FAK) expression and tyrosine phosphorylation are connected with elevated tumorigenesis. Null mutation of FAK results in embryonic lethality, and FAK-/- fibroblasts exhibit cell migration defects in culture. Here we show that viral Src (v-Src) transformation of FAK-/- cells promotes integrin-stimulated motility equal to stable FAK reexpression. However, FAK-/- v-Src cells were not invasive, and FAK reexpression, Tyr-397 phosphorylation, and FAK kinase activity were required for the generation of an invasive cell phenotype. Cell invasion was linked to transient FAK accumulation at lamellipodia, formation of a FAK-Src-p130Cas-Dock180 signaling complex, elevated Rac and c-Jun NH2-terminal kinase activation, and increased matrix metalloproteinase expression and activity. Our studies support a dual role for FAK in promoting cell motility and invasion through the activation of distinct signaling pathways.  相似文献   

16.
Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cdelta (PKCdelta)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCdelta is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCdelta using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCdelta and phosphorylated PKCdelta protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCdelta inhibition can limit migration and invasion of prostate cancer cells.  相似文献   

17.
Migration of endothelial cells is requisite to wound repair and angiogenesis. Since the glycoprotein SPARC (secreted protein, acidic and rich in cysteine) is associated with remodeling, cellular migration, and angiogenesis in vitro, we questioned whether SPARC might influence the motility of endothelial cells. In this study we show that, in the absence of serum, exogenous SPARC inhibits the migration of bovine aortic endothelial cells induced by bFGF. Similar results were obtained from two different assays, in which cell migration was measured in a Boyden chamber and in monolayer culture after an experimental wound. Without bFGF, the migration of endothelial cells was unaffected by SPARC. The inhibitory effect of SPARC on cell motility was dose-dependent, required the presence of Ca2+, was mimicked by synthetic peptides from the N- and C-terminal Ca(2+)-binding domains of the protein, and was not seen in the presence of serum. Modulation of the activities of secreted and cell-associated proteases, including plasminogen activators and metalloproteinases, appeared not to be responsible for the effects that we observed on the motility of endothelial cells. Moreover, a molecular interaction between SPARC and bFGF was not detected, and SPARC did not interfere with the binding of bFGF to high-affinity receptors on endothelial cells. Finally, in culture medium that contained serum, SPARC inhibited the incorporation of [3H]-thymidine into newly synthesized DNA, both in the absence and presence of bFGF. However, DNA synthesis was not affected by SPARC when the cells were plated on gelatin or fibronectin in serum-free medium. We propose that the combined action of a serum factor and SPARC regulates both endothelial cell proliferation and migration and coordinates these events during morphogenetic processes such as wound repair and angiogenesis.  相似文献   

18.
Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5-10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax-/- and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax-/- cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax-/- and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices.  相似文献   

19.
ABSTRACT

Aberrant activation of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, Met, is involved in the development and progression of many human cancers. In the screening assay of extracts from the root tuber of Tetrastigma hemsleyanum Diels et Gilg, isoquercitrin inhibited HGF/SF-Met signaling as indicated by its inhibitory activity on HGF/SF-induced cell scattering. Further analysis revealed that isoquercitrin specifically inhibited HGF/SF-induced tyrosine phosphorylation of Met. We also found that isoquercitrin decreased HGF-induced migration and invasion by parental or HGF/SF-transfected bladder carcinoma cell line NBT-II cells. Furthermore, isoquercitrin inhibited HGF/SF-induced epithelial mesenchymal transition in vitro and the invasion/metastasis of HGF/SF-transfected NBT-II cells in vivo. Our data suggest the possible use of isoquercitrin in human cancers associated with dysregulated HGF/SF-Met signaling.  相似文献   

20.
Prostate cancer metastasis is often associated with poor prognosis. The molecular coupling of the adaptor protein Crk to the docking protein p130(Cas) serves as a switch that regulates cell migration in several invasive cancer cells and Ack appears to act upstream of CrkII to modulate the cell motility. However, the precise role of Ack, Crk and p130(Cas) complex in prostate cancer migration remains unknown. In this study we examined the expression of Crk and p130(Cas) in prostate cancer cell lines, and found that CrkI and p130(Cas) protein level was higher in highly invasive PC-3M and PC-3 cell lines than in moderately invasive DU-145 cells. Upon shRNA mediated knockdown of CrkI and p130(Cas) in PC-3M cells, cell migration and invasion were significantly inhibited as analyzed by wound healing assay and transwell invasion assay. Furthermore, co-immunoprecipitation assay showed that p130(Cas) interacted with CrkI in PC-3M cells and the stability of p130(Cas) and CrkI depended on each other. AckI interacted with both CrkI and p130(Cas) and the interaction of AckI with CrkI seemed to be independent of p130(Cas) . Taken together, our results demonstrate the high expression of CrkI and p130(Cas) in invasive prostate cancer cells and the important role of CrkI/p130(Cas) complex in the migration and invasion of prostate cancer cells. These data suggest that CrkI/p130(Cas) could be exploited as potential molecular therapeutic target for prostate cancer metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号