首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Gutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluorescence in situ hybridization. As in all other gutless oligochaetes examined to date, I. leukodermatus and I. makropetalos harbor large, oval bacteria identified as Gamma 1 symbionts. The presence of genes coding for ribulose-1,5-bisphosphate carboxylase/oxygenase form I (cbbL) and adenosine 5'-phosphosulfate reductase (aprA) supports earlier studies indicating that these symbionts are chemoautotrophic sulfur oxidizers. Alphaproteobacteria, previously identified only in the gutless oligochaete Olavius loisae from the southwest Pacific Ocean, coexist with the Gamma 1 symbionts in both I. leukodermatus and I. makropetalos, with the former harboring four and the latter two alphaproteobacterial phylotypes. The presence of these symbionts in hosts from such geographically distant oceans as the Atlantic and Pacific suggests that symbioses with alphaproteobacterial symbionts may be widespread in gutless oligochaetes. The high phylogenetic diversity of bacterial endosymbionts in two species of the genus Inanidrilus, previously known only from members of the genus Olavius, shows that the stable coexistence of multiple symbionts is a common feature in gutless oligochaetes.  相似文献   

2.
Gutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluorescence in situ hybridization. As in all other gutless oligochaetes examined to date, I. leukodermatus and I. makropetalos harbor large, oval bacteria identified as Gamma 1 symbionts. The presence of genes coding for ribulose-1,5-bisphosphate carboxylase/oxygenase form I (cbbL) and adenosine 5′-phosphosulfate reductase (aprA) supports earlier studies indicating that these symbionts are chemoautotrophic sulfur oxidizers. Alphaproteobacteria, previously identified only in the gutless oligochaete Olavius loisae from the southwest Pacific Ocean, coexist with the Gamma 1 symbionts in both I. leukodermatus and I. makropetalos, with the former harboring four and the latter two alphaproteobacterial phylotypes. The presence of these symbionts in hosts from such geographically distant oceans as the Atlantic and Pacific suggests that symbioses with alphaproteobacterial symbionts may be widespread in gutless oligochaetes. The high phylogenetic diversity of bacterial endosymbionts in two species of the genus Inanidrilus, previously known only from members of the genus Olavius, shows that the stable coexistence of multiple symbionts is a common feature in gutless oligochaetes.  相似文献   

3.
Frenulates are a group of gutless marine annelids belonging to the Siboglinidae that are nutritionally dependent upon endosymbiotic bacteria. We have characterized the bacteria associated with several frenulate species from mud volcanoes in the Gulf of Cadiz by PCR-DGGE of bacterial 16S rRNA genes, coupled with analysis of 16S rRNA gene libraries. In addition to the primary symbiont, bacterial consortia (microflora) were found in all species analysed. Phylogenetic analyses indicate that the primary symbiont in most cases belongs to the Gammaproteobacteria and were related to thiotrophic and methanotrophic symbionts from other marine invertebrates, whereas members of the microflora were related to multiple bacterial phyla. This is the first molecular evidence of methanotrophic bacteria in at least one frenulate species. In addition, the occurrence of the same bacterial phylotype in different Frenulata species, from different depths and mud volcanoes suggests that there is no selection for specific symbionts and corroborates environmental acquisition as previously proposed for this group of siboglinids.  相似文献   

4.
Marine nematode worms without a mouth or functional gut are found worldwide in intertidal sandflats, deep-sea muds and methane-rich pock marks, and morphological studies show that they are associated with endosymbiotic bacteria. While it has been hypothesized that the symbionts are chemoautotrophic sulfur oxidizers, to date nothing is known about the phylogeny or function of endosymbionts from marine nematodes. In this study, we characterized the association between bacterial endosymbionts and the marine nematode Astomonema sp. from coral reef sediments in the Bahamas. Phylogenetic analysis of the host based on its 18S rRNA gene showed that Astomonema sp. is most closely related to non-symbiotic nematodes of the families Linhomoeidae and Axonolaimidae and is not closely related to marine stilbonematinid nematodes with ectosymbiotic sulfur-oxidizing bacteria. In contrast, phylogenetic analyses of the symbionts of Astomonema sp. using comparative 16S rRNA gene sequence analysis revealed that these are closely related to the stilbonematinid ectosymbionts (95-96% sequence similarity) as well as to the sulfur-oxidizing endosymbionts from gutless marine oligochaetes. The closest free-living relatives of these gammaproteobacterial symbionts are sulfur-oxidizing bacteria from the family Chromatiaceae. Transmission electron microscopy and fluorescence in situ hybridization showed that the bacterial symbionts completely fill the gut lumen of Astomonema sp., suggesting that these are their main source of nutrition. The close phylogenetic relationship of the Astomonema sp. symbionts to known sulfur-oxidizing bacteria as well as the presence of the aprA gene, typically found in sulfur-oxidizing bacteria, indicates that the Astomonema sp. symbionts use reduced sulfur compounds as an energy source to provide their hosts with nutrition.  相似文献   

5.
The bacterial symbiosis in 13 different species of the gutless phallodriline genera Inanidrilus and Olavius (Tubificidae, Oligochaeta) from Carrie Bow Cay (Belize), Florida and Bermuda is structurally compared. The result is an essentially consistent symbiotic pattern regarding the position and ultrastructural design of the prokaryotic partners and their integration in the anatomy of the animal hosts. Based on numerous micrographs, it is calculated that the endobacteria comprise about 25% of the host's volume. This corresponds to at least 0.6 × 106 bacterial cells per worm of (fixed) 6 mm length, a figure that underlines the high nutritive importance of the bacteria in this symbiotic association. This importance is also endorsed by the percentage of bacteria in digestion (on average 8–10%, up to 24%) by the phagocytotic epidermal cells of the host. The symbiosis always involves two different morphological types of bacteria, apparently without intermediate stages. Detailed biometrical analyses demonstrate the significantly different size ranges of the two morphotypes, even though in two of the species, the normally rod-shaped Type S-bacteria are much longer than usual. About 1% of the larger, oval ‘Type L’ is regularly found in division; in some sections, this value can reach 11%. Formation of sulfur-containing globules in this type was proven by histochemical analysis. The trophic relevance of the symbiosis is considered. Zoogeographical and evolutionary implications of the observed consistency in the symbiotic pattern in all the species studied are discussed.  相似文献   

6.
The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur‐oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto‐ and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well‐supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto‐ and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.  相似文献   

7.
The existence of gutless animals was known, and their putativenutritional processes investigated for several decades, beforethe sulfide-oxidizing symbiosis that sustains them was discovered.Research into the large, gutless Pogonophora of the marine,thermal vent communities, and the relatively large, gutless,bivalved mollusc Solemya reidi provided an adequate paradigmand stimulated exploration of the evolutionary impact of thesymbiosis. These "unwhole" organisms provide an epistemologicalmodel for studying the necessity, as well as the limitationsof the concept of organism. For non-parasitic gutless animals, and for others with reducedguts, a variety of reductionistic, adaptationistic and organicistichypotheses were advanced, but despite a general familiaritywith parallel symbioses there was a reluctance to transcendthe organismic mind-set Free-living sulfide-oxidizing bacteria inhabit a two-dimensionalenvironment: the interface between aerobic and anaerobic environments.A host, such as Solemya, adds a third dimension, regulatingthe supply of necessary oxygen and sulfide at the molecular,functional morphological, and behavioural levels. Morphologicalcorrelations of the symbiosis in bivalves include expansionof gills to house bacteria, paedomorphic reduction of outerdemibranchs and palps, and reduction or loss of siphons andguts. In S. reidi symbiont transmission appears to be vertical,i.e., an intimate transferral from one generation to the next. Initial failure to realise that gutless animals are sustainedby intracellular bacteria echoes the original response to theendosymbiotic theory of the origins of eukaryotes, which hada larger historical context. Yet evolution by association hasperiodically produced major advances in the history of organisms.While simplistic reductionism has a false allure, organicismalso has limitations that are illustrated by the above casehistory. Whether we identify ourselves as adaptationistic neo-Darwinists,or require that greater emphasis be placed on the evolutionof integrated dynamic wholes, as do the structuralists, we mustsomehow accommodate the ultraorganismic evolution of new "wholes"by the association of previously independent forms.  相似文献   

8.
Knief C  Delmotte N  Vorholt JA 《Proteomics》2011,11(15):3086-3105
Diverse bacterial taxa that live in association with plants affect plant health and development. This is most evident for those bacteria that undergo a symbiotic association with plants or infect the plants as pathogens. Proteome analyses have contributed significantly toward a deeper understanding of the molecular mechanisms underlying the development of these associations. They were applied to obtain a general overview of the protein composition of these bacteria, but more so to study effects of plant signaling molecules on the cytosolic proteome composition or metabolic adaptations upon plant colonization. Proteomic analyses are particularly useful for the identification of secreted proteins, which are indispensable to manipulate a host plant. Recent advances in the field of proteome analyses have initiated a new research area, the analysis of more complex microbial communities. Such studies are just at their beginning but hold great potential for the future to elucidate not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa when living in association with plants. These include not only the symbiotic and pathogenic bacteria, but also the commensal bacteria that are consistently found in association with plants and whose functions remain currently largely uncovered.  相似文献   

9.
In shallow sublittoral sediments of the north-west coast of the Island of Elba, Italy, a new gutless marine oligochaete, Olavius ilvae n. sp., was found together with a congeneric but not closely related species, O. algarvensis Giere et al., 1998. In diagnostic features of the genital organs, the new species differs from other Olavius species in having bipartite atria and very long, often folded spermathecae, but lacking penial chaetae. The Elba form of O. algarvensis has some structural differences from the original type described from the Algarve coast (Portugal). The two species from Elba share characteristics not previously reported for gutless oligochaetes: the lumen of the body cavity is unusually constricted and often filled with chloragocytes, and the symbiotic bacteria are often enclosed in vacuoles of the epidermal cells. Regarding the bacterial ultrastructure, the species share three similar morphotypes as symbionts; additionally, in O. algarvensis a rare fourth type was found. The divergence of the symbioses in O. algarvensis, and the coincidence in structural and bacteria-symbiotic features between the two taxonomically different, but syntopic host species at Elba are discussed.  相似文献   

10.
The phylogenetic relationships of chemoautotrophic endosymbionts in the gutless marine oligochaete Inanidrilus leukodermatus to chemoautotrophic ecto- and endosymbionts from other host phyla and to free-living bacteria were determined by comparative 16S rRNA sequence analysis. Fluorescent in situ hybridization confirmed that the 16S rRNA sequence obtained from these worms originated from the symbionts. The symbiont sequence is unique to I. leukodermatus. In phylogenetic trees inferred by both distance and parsimony methods, the oligochaete symbiont is peripherally associated with one of two clusters of chemoautotrophic symbionts that belong to the gamma subdivision of the Proteobacteria. The endosymbionts of this oligochaete form a monophyletic group with chemoautotrophic ectosymbionts of a marine nematode. The oligochaete and nematode symbionts are very closely related, although their hosts belong to separate, unrelated animal phyla. Thus, cospeciation between the nematode and oligochaete hosts and their symbionts could not have occurred. Instead, the similar geographic locations and habitats of the hosts may have influenced the establishment of these symbioses.  相似文献   

11.
The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the alpha subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation.  相似文献   

12.
Although hematophagous black flies are well-known socioeconomic pests and vectors of disease agents, their associated bacteria are poorly known. A systematic analysis of the bacterial community associated with freshly emerged adult black flies of four North American species, using cultivation-independent molecular techniques, revealed 75 nonsingleton bacterial phylotypes. Although 17 cosmopolitan phylotypes were shared among host species, each fly species had a distinct bacterial profile. The bacterial composition, however, did not correlate strongly with the host phylogeny but differed between male and female flies of the same species from the same habitat, demonstrating that a group of insects have a gender-dependent bacterial community. In general, female flies harbor a less diverse bacterial community than do males. The anatomical locations of selected bacteria were revealed using fluorescence in situ hybridization. Understanding the physiological function of the associated bacterial community could provide clues for developing novel pest-management strategies.  相似文献   

13.
Flow cytometry has provided a powerful tool for analyzing bacteria-host cell associations. Established approaches have used bacteria, labeled either directly with fluorochromes or indirectly with fluorescently conjugated antibodies, to detect these associations. Although useful, these techniques are consistently unable to include all host cells in the analysis while excluding free, aggregated bacteria. This study describes a new flow cytometry method of assessing bacterial adherence to host cells based on direct fluorescent labeling of both bacteria and host cells. Eukaryotic host cells were labeled with PKH-26, a red fluorescent dye, and bacteria were labeled with fluorescein isothiocyanate, a green fluorescent dye. The red host cells were gated and the mean green fluorescence intensity (MFI) of these red cells was determined. We used MFI values obtained from control samples (unlabeled and labeled host cells with unlabeled bacteria) to eliminate contributions due to autofluorescence. The final MFI values represent fluorescence of host cells resulting from the adherent bacteria. Because all red fluorescent cells are analyzed, this method includes all the eukaryotic cells for analysis but excludes all free or aggregated bacteria that are not bound to target cells.  相似文献   

14.
Olavius crassitunicatus is a small symbiont-bearing worm that occurs at high abundance in oxygen-deficient sediments in the East Pacific Ocean. Using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization, we examined the diversity and phylogeny of bacterial symbionts in two geographically distant O. crassitunicatus populations (separated by 385 km) on the Peru margin (water depth, approximately 300 m). Five distinct bacterial phylotypes co-occurred in all specimens from both sites: two members of the gamma-Proteobacteria (Gamma 1 and 2 symbionts), two members of the delta-Proteobacteria (Delta 1 and 2 symbionts), and one spirochete. A sixth phylotype belonging to the delta-Proteobacteria (Delta 3 symbiont) was found in only one of the two host populations. Three of the O. crassitunicatus bacterial phylotypes are closely related to symbionts of other gutless oligochaete species; the Gamma 1 phylotype is closely related to sulfide-oxidizing symbionts of Olavius algarvensis, Olavius loisae, and Inanidrilus leukodermatus, the Delta 1 phylotype is closely related to sulfate-reducing symbionts of O. algarvensis, and the spirochete is closely related to spirochetal symbionts of O. loisae. In contrast, the Gamma 2 phylotype and the Delta 2 and 3 phylotypes belong to novel lineages that are not related to other bacterial symbionts. Such a phylogenetically diverse yet highly specific and stable association in which multiple bacterial phylotypes coexist within a single host has not been described previously for marine invertebrates.  相似文献   

15.
The fungus-growing termites Macrotermes cultivate the obligate ectosymbiontic fungi, Termitomyces. While their relationship has been extesively studied, little is known about the gut bacterial symbionts, which also presumably play a crucial role for the nutrition of the termite host. In this study, we investigated the bacterial gut microbiota in two colonies of Macrotermes gilvus, and compared the diversity and community structure of bacteria among nine termite morphotypes, differing in caste and/or age, using terminal restriction fragment length polymorphism (T-RFLP) and clonal analysis of 16S rRNA. The obtained molecular community profiles clustered by termite morphotype rather than by colony, and the clustering pattern was clearly more related to a difference in age than to caste. Thus, we suggest that the bacterial gut microbiota change in relation to the food of the termite, which comprises fallen leaves and the fungus nodules of Termitomyces in young workers, and leaves degraded by the fungi, in old workers. Despite these intracolony variations in bacterial gut microbiota, their T-RFLP profiles formed a distinct cluster against those of the fungus garden, adjacent soil and guts of sympatric wood-feeding termites, implying a consistency and uniqueness of gut microbiota in M. gilvus. Since many bacterial phylotypes from M. gilvus formed monophyletic clusters with those from distantly related termite species, we suggest that gut bacteria have co-evolved with the termite host and form a microbiota specific to a termite taxonomic and/or feeding group, and furthermore, to caste and age within a termite species.  相似文献   

16.
Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes endosymbionts and with other similar sequences identified by BLAST searches. Although the endosymbionts of armored scales are only distantly related to the endosymbionts of the other sternorrhynchan insects, they are closely related to bacteria associated with eriococcid and margarodid scale insects, to cockroach and auchenorrynchan endosymbionts (Blattabacterium and Sulcia), and to male-killing endosymbionts of ladybird beetles. We propose the name "Candidatus Uzinura diaspidicola" for the primary endosymbionts of armored scale insects.  相似文献   

17.
Two species linked by a mutualistic relationship may evolve correlated population differentiation if there is long-term continuity of interactions between specific partners. This phenomenon was analyzed by multilocus enzyme electrophoresis on the annual legume Amphicarpaea bracteata and its nitrogen-fixing bacterial symbionts (Bradyrhizobium sp.) sampled from >20 sites over a 1000 km area. Three analyses indicated that genetic differentiation was correlated in the two organisms. First, the genetic distance between bacterial populations at each pair of sites was significantly positively related to the genetic distance between their host plant populations, as evaluated by the Mantel test. Second, a cluster analysis revealed that several divergent lineages were present both among plants and among bacteria. Bacterial lineages showed a highly nonrandom distribution across plant lineages that was consistent in each of two regions sampled. Finally, there were numerous cases where populations of the same plant lineage 1000 km apart harbored bacterial isolates with an identical multilocus genotype. Thus, despite recurrent opportunities for partner switching, particular genotypes of these two organisms associate consistently across multiple habitats throughout their geographic range.  相似文献   

18.
Studies on the interactions of bacterial pathogens with their host have provided an invaluable source of information on the major functions of eukaryotic and prokaryotic cell biology. In addition, this expanding field of research, known as cellular microbiology, has revealed fascinating examples of trans-kingdom functional interplay. Bacterial factors actually exploit eukaryotic cell machineries using refined molecular strategies to promote invasion and proliferation within their host. Here, we review a family of bacterial toxins that modulate their activity in eukaryotic cells by activating Rho GTPases and exploiting the ubiquitin/proteasome machineries. This family, found in human and animal pathogenic Gram-negative bacteria, encompasses the cytotoxic necrotizing factors (CNFs) from Escherichia coli and Yersinia species as well as dermonecrotic toxins from Bordetella species. We survey the genetics, biochemistry, molecular and cellular biology of these bacterial factors from the standpoint of the CNF1 toxin, the paradigm of Rho GTPase-activating toxins produced by urinary tract infections causing pathogenic Escherichia coli. Because it reveals important connections between bacterial invasion and the host inflammatory response, the mode of action of CNF1 and its related Rho GTPase-targetting toxins addresses major issues of basic and medical research and constitutes a privileged experimental model for host-pathogen interaction.  相似文献   

19.
Wolbachia are a genus of bacterial symbionts that are known to manipulate the reproduction of their arthropod hosts, both by distorting the host sex ratio and by inducing cytoplasmic incompatibility. Previous work has suggested that some Wolbachia clades specialize in particular host taxa, but others are diverse. Furthermore, the frequency with which related strains change in phenotype is unknown. We have examined these issues for Wolbachia bacteria from Acraea butterflies, where different interactions are known in different host species. We found that bacteria from Acraea butterflies mostly cluster together in several different clades on the bacterial phylogeny, implying specialization of particular strains on these host taxa. We also observed that bacterial strains with different phenotypic effects on their hosts commonly shared identical gene sequences at two different loci. This suggests both that the phenotypes of the strains have changed recently between sex ratio distortion and cytoplasmic incompatibility, and that host specialization is not related to the bacterial phenotype, as suggested from previous data. We also analysed published data from other arthropod taxa, and found that the Wolbachia infections of the majority of arthropod genera tend to cluster together on the bacterial phylogeny. Therefore, we conclude that Wolbachia is most likely to move horizontally between closely related hosts, perhaps because of a combination of shared vectors for transmission and physiological specialization of the bacteria on those hosts.  相似文献   

20.
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号