首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Blastocysts which developed from two-cell mouse embryos in culture tubes containing an atmosphere with 20% oxygen had approximately 20% fewer blastomeres than blastocysts which developed under an oxygen concentration of 5%. When these smaller blastocysts were transferred to the uteri of pseudopregnant foster mothers, the foetuses developing were as viable as those developing from blastocysts cultured under 5% oxygen, indicating their ability to regulate for a lower blastomere number by at least day 17 of development. The transfer operation itself had no adverse effect on foetal or placental growth. However, culture of blastocysts in vitro did depress foetal though not placental growth, suggesting that the inner cell mass is more susceptible than the trophectoderm to culture in vitro. Foetal but not placental growth was lower following the transfer of blastocysts to a day-3 rather than a day-4 uterus. Four cases of placental fusion were found. In one case, the foetuses were contained within the same embryonic sac and may have been twins.  相似文献   

2.
Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for ex-vivo expansion of these cells.  相似文献   

3.
Human diploid fibroblast WI38 and canine epithelial MDCK cells were incubated in an environment flushed continuously for 96 h with 3% and 20% oxygen. Lactate and pyruvate formation and LDH isoenzyme patterns of cells in logarithmic and stationary phases showed characteristic differences between both cell lines. Lactate formation by WI38 cells at 3% oxygen was considerable within the first 18 h. The MDCK cells responded with an even greater lactate formation only after 18 h.The dynamics of LDH isoenzyme changes measured as H/M subunits revealed for WI38 cells a sharp decline after 40 h at 3% oxygen in both logarithmic and confluent stages. MDCK cells show a sharp decline in H/M during the first 40 h (confluent phase) or 20 h (log phase). No changes in either cell line, regardless of the oxygen environment, were seen in the ultrastructure of cells, as seen by transmission electron microscopy. It is suggested that the fibroblast, being better equipped for anaerobic metabolism, quickly produces more lactate without changing the LDH isoenzyme pattern at 3% oxygen. Epithelial cells react first with a modification in the LDH pattern and then a continuous increase in the formation of lactate to very high values.  相似文献   

4.
R D Koos  M A Feiertag 《Steroids》1989,54(5):553-562
Studies were carried out on the effect of oxygen tension on progesterone (P) accumulation in rat granulosa cell cultures. At 1-2% oxygen, basal, luteinizing hormone (LH)-stimulated, and follicle stimulating hormone (FSH)-stimulated P accumulations were 20, 18, and 11%, respectively, of P levels at 20% oxygen. Basal P accumulation was also inhibited at 5% oxygen, but LH- and FSH-stimulated P levels were 50% and 40% higher, respectively, than at 20% oxygen. P levels at 10% oxygen were intermediate between those at 5% and 20% oxygen. The inhibitory effect of 1-2% oxygen on P accumulation was reversible: LH-stimulated P accumulation was inhibited in cultures incubated in 1-2% oxygen for 24 h, but rebounded during a subsequent 24 h period in 20% oxygen to the same level as that in cultures maintained continuously in 20% oxygen. We conclude that oxygen tension does influence granulosa cell steroidogenesis in vitro. Changes in blood flow and oxygen delivery to the ovary before and after ovulation could, therefore, effect the pattern of steroidogenesis during this period.  相似文献   

5.
Melanin precursors and free radicals, cytotoxic substances, are produced during melanin synthesis by tyrosinase. We compared these cytotoxic effects of L-dopa and oxygen on the cell cycle of melanotic retinal pigment epithelial (RPE) cells with amelanotic RPE cells because of the differences of tyrosinase activities between melanotic and amelanotic RPE cells. Flow cytometric DNA analysis of RPE cells exposed to L-dopa (100 μM and 250 μM) were conducted at several oxygen concentrations (20%, 10%, and 5%). The dose-dependent effect of L-dopa to arrest the cell cycle (the S phase) was more pronounced in melanotic than in amelanotic RPE cells, and oxygen caused arrest in the G1 phase.  相似文献   

6.
ABSTRACT: BACKGROUND: Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. RESULTS: At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. CONCLUSIONS: Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.  相似文献   

7.
Development of rabbit preimplantation embryos cultured under 20, 5 or 1% oxygen was studied. Three-day-old morulae were cultured in a protein-free medium (BSM II supplemented with 5 mg PVP/ml medium) for 24 and 48 h. Embryonic development was evaluated by gross morphology and by incorporation of tritiated thymidine as an indicator of cell proliferation. The lower oxygen concentrations yielded significantly better embryo development at 24 and at 48 h than the 20% concentration. There was no significant difference in development between 5% and 1% oxygen. Addition of the radical scavanger superoxiddismutase (SOD), either alone or in combination with catalase or reduced glutathione, did not improve embryo development even in the 20% oxygen group. Our data suggest the need to reduce in vitro oxygen levels from 20% to more physiological concentrations.  相似文献   

8.

Background

Mitochondrial activity inhibits proliferation and is required for differentiation of myoblasts. Myoblast proliferation is also inhibited by the ∼20% oxygen level used in standard tissue culture. We hypothesize that mitochondrial activity would be greater at hyperoxia (20% O2) relative to more physiological oxygen (5% O2).

Methodology/Principal Findings

Murine primary myoblasts from isolated myofibres and conditionally immortalized H-2K myoblasts were cultured at 5% and 20% oxygen. Proliferation, assayed by cell counts, EdU labeling, and CFSE dilution, was slower at 20% oxygen. Expression of MyoD in primary myoblasts was delayed at 20% oxygen, but myogenicity, as measured by fusion index, was slightly higher. FACS-based measurement of mitochondrial activity indicators and luminometric measurement of ATP levels revealed that mitochondria exhibited greater membrane potential and higher levels of Reactive Oxygen Species (ROS) at 20% oxygen with concomitant elevation of intracellular ATP. Mitochondrial mass was unaffected. Low concentrations of CCCP, a respiratory chain uncoupler, and Oligomycin A, an ATP synthase inhibitor, each increased the rate of myoblast proliferation. ROS were investigated as a potential mechanism of mitochondrial retrograde signaling, but scavenging of ROS levels by N-acetyl-cysteine (NAC) or α-Phenyl-N-tert-butylnitrone (PBN) did not rescue the suppressed rate of cell division in hyperoxic conditions, suggesting other pathways. Primary myoblasts from older mice showed a slower proliferation than those from younger adult mice at 20% oxygen but no difference at 5% oxygen.

Conclusions/Significance

These results implicate mitochondrial regulation as a mechanistic explanation for myoblast response to oxygen tension. The rescue of proliferation rate in myoblasts of aged mice by 5% oxygen suggests a major artefactual component to age-related decline of satellite cell proliferation in standard tissue culture at 20% oxygen. It lends weight to the idea that these age-related changes result at least in part from environmental factors rather than characteristics intrinsic to the satellite cell.  相似文献   

9.
Most current in vitro production systems terminate at the blastocyst stage in cattle. The goal of the present research was to identify culture conditions that support individual blastocyst survival and interferon-tau (IFNT) production in cattle. In the first study, two media (medium 199 [M199] and potassium simplex optimized medium [KSOM]) and two oxygen tensions (5 and 20%) were compared for their ability to sustain blastocyst survival and IFNT production from days 8 to 11 post-insemination. Survival and total cell numbers were greater (P<0.05) for blastocysts cultured in M199 in a 5% oxygen environment compared with other medium and oxygen treatment combinations. Serum supplementation was required for blastocyst survival and IFNT production. IFNT concentrations in conditioned medium were similar for blastocysts cultured in M199 or KSOM, but blastocysts incubated in 5% oxygen produced less (P<0.001) IFNT than their 20% oxygen counterparts. Oxidative stress was not responsible for the increase in IFNT concentrations. Supplementation with fibroblast growth factor 2 did not affect cell numbers but increased (P<0.02) IFNT concentrations for blastocysts cultured in 5% oxygen but not those cultured in 20% oxygen. In conclusion, culturing blastocysts of cattle in a 5% oxygen environment with M199 containing serum sustains embryo viability and permits constitutive and inducible IFNT production. Incubation in 20% oxygen increases IFNT production. The mechanism responsible for this event and its physiological relevance to conceptus development in utero remain unknown.  相似文献   

10.
The physiological oxygen concentration of many tissues is far lower than that in which cells are typically cultured in vitro and this may inadvertently influence the proliferation and differentiation potential of many cell types. Muscle derived stem cells, known as satellite cells are responsible for the maintenance and repair of muscle tissue post-natally and in vivo would be exposed to oxygen concentrations of ~2-5%. Relatively few studies describe the function of these cells in large animal models and here we investigate the influence oxygen concentration has on modulating porcine muscle derived stem cell fate. We compared cells derived from two metabolically distinct muscles, the diaphragm and the hind limb semi-membranosus (SM) muscle. The two sub-populations responded differently to culture at atmospheric (~20%) and physiological (~5%) oxygen concentration. While myogenesis was enhanced in both populations at low oxygen, noticeably diaphragm derived cells exhibited greater myotube formation, than those from SM. The trans-differentiation of cells derived from these two sources was similarly affected, with considerable differences seen in adipogenic and neuronal tendencies. In addition to the effect of oxygen on cell phenotype, the expression of key signalling proteins varied between the two sub-populations during early time-points of induced differentiation, suggesting altered regulation of muscle specific stem cells under these conditions. While differences in muscle stem cell potential requires further investigation, the culture of cells in physiological oxygen concentration appears as fundamental to recreating the micro-environmental niche as routinely used factors such as cytokines, substrata and matrices.  相似文献   

11.
In this study, we investigated the effect of two oxygen concentrations (5 and 20%) during in vitro maturation (IVM) and during in vitro culture (IVC) on porcine embryo development and analysed differences in gene expression between cumulus-oocyte complexes matured under 5 or 20% oxygen and the resulting blastocysts cultured under 5% or 20% oxygen following parthenogenetic activation. There was no significant difference in oocyte maturation rate. However, the numbers of resulting blastocysts were significantly increased in the 5% IVC group compared with the 20% IVC group. Moreover, the M20C5 treatment group (23.01%) supported greater blastocyst development compared with the M5C5 (14.32%), M5C20 (10.30%), and M20C20 (17.88%) groups. However, total cell numbers were not significantly different among groups. According to mRNA abundance data of multiple genes, each treatment altered the expression of genes in different patterns. GLUT1, G6PD and LDHA were up-regulated in cumulus cells that had been matured in low oxygen, suggesting a higher glucose uptake and an increase in anaerobic glycolysis, whereas cyclin B1 (CCNB) and MnSOD (Mn-superoxide dismutase) were upregulated in cumulus cells that had been matured in high oxygen, which suggests a higher activity of mitosis-promoting factor and antioxidant response. In spite of these differential effects on cumulus cells, oocytes could mature normally regardless of different oxygen concentrations. Therefore, it can be concluded that high oxygen concentration during in vitro maturation and low oxygen during in vitro culture may alter the expression of multiple genes related to oocyte competence and significantly improves embryo development (p < 0.05) but not blastocyst quality.  相似文献   

12.
A comparison of colony-formation efficiency (CFE) was made between six independent bovine fetal fibroblast (BFF) cell lines used in somatic cell nuclear transfer. Variation in CFE was assessed under different culture conditions. The conditions examined were ambient atmosphere (approximately 20% oxygen) culture versus 5% oxygen culture, three levels of fetal bovine serum (FBS) in the medium (5%, 10% or 20%), and the amendment of 10% FBS medium with basic fibroblast growth factor (1 ng/mL), L-carnosine (20 mM), or hydrocortisone (1 microM). The six BFF cell lines showed significant differences from one another in CFE. No significant difference in CFE was found with reduced oxygen culture. L-Carnosine also had no significant effect on CFE. A FBS concentration of 10% was found to produce the best overall CFE. Hydrocortisone treatment reduced the size of colonies although the number of colonies formed was not affected. Basic FGF increased the size of colonies but the number of colonies formed was not affected. The results showed that different BFF cell lines varied significantly in their CFE. Also, some medium supplements or culture conditions that have shown positive CFE effects on the fibroblasts of other species failed to show significant positive CFE effects on the BFF cell lines tested.  相似文献   

13.
Blastocyst development, total cell number and allocation to inner cell mass (ICM) and trophectoderm (TE) lineages was compared among day 9 hatched blastocysts from four culture treatments in a two-factor design. Two modified commercial media (KSOM and SOF) were used in atmospheres with two oxygen concentrations (5% and 20% O2). No significant effect of medium on development was found, but 20% O2 increased hatching (p < 0.05). There were more cells in hatched blastocysts cultured in KSOM than in SOF (181 vs 136, respectively; p < 0.0001); however, ICM/total cell ratio was not affected by medium. There was a trend suggesting that the proportion of cells allocated to ICM was lower in hatched blastocysts cultured under 5% O2 compared with 20% O2 (0.323 vs 0.380, respectively; p < 0.1). No significant interactions between medium type and oxygen concentration were found. These results indicate that culture components used in this study may affect cell proliferation without altering cell allocation, and that oxygen concentration may play a role in allocation of cells to ICM and TE lineages.  相似文献   

14.
Abstract: The present study tests the hypothesis that ventilation with 100% O2 during recovery from asphyxia leads to greater disturbance in brain function, as measured by dopamine metabolism, than does ventilation with 21% oxygen. This hypothesis was tested using mechanically ventilated, anesthetized newborn piglets as an animal model. Cortical oxygen pressure was measured by the oxygen-dependent quenching of phosphorescence, striatal blood flow by laser Doppler, and the extracellular levels of dopamine and its metabolites by in vivo microdialysis. After establishment of a baseline, both the fraction of inspired oxygen (FiO2) and the ventilator rate were reduced in a stepwise fashion every 20 min over a 1-h period. For the subsequent 2-h recovery, the animals were randomized to breathing 21 or 100% oxygen. It was observed that during asphyxia cortical oxygen pressure decreased from 36 to 7 torr, extracellular dopamine increased 8,300%, and dihydroxyphenylacetic acid and homovanillic acid decreased by 65 and 60%, respectively, compared with controls. During reoxygenation after asphyxia, cortical oxygen pressure was significantly higher in the piglets ventilated with 100% oxygen than in those ventilated with 21% oxygen (19 vs. 11 torr). During the first hour of reoxygenation, extracellular dopamine levels decreased to ~200% of control in the 21% oxygen group, whereas these levels were still much higher in the 100% oxygen group (~500% of control). After ~2 h of reoxygenation, there was a secondary increase in extracellular dopamine to ~750 and ~3,000% of baseline for the animals ventilated with 21 and 100%, respectively. It is concluded that although 100% FiO2 after asphyxia increases cortical oxygenation compared with 21% FiO2, it also results in poorer recovery in dopamine metabolism and higher secondary release of striatal dopamine. The resulting increased extracellular levels of dopamine may exacerbate posthypoxic cerebral injury.  相似文献   

15.
Tissues and organs in vivo are under a hypoxic condition; that is, the oxygen tension is typically much lower than in ambient air. However, the effects of such a hypoxic condition on tendon stem cells, a recently identified tendon cell, remain incompletely defined. In cell culture experiments, we subjected human tendon stem cells (hTSCs) to a hypoxic condition with 5% O2, while subjecting control cells to a normaxic condition with 20% O2. We found that hTSCs at 5% O2 had significantly greater cell proliferation than those at 20% O2. Moreover, the expression of two stem cell marker genes, Nanog and Oct-4, was upregulated in the cells cultured in 5% O2. Finally, in cultures under 5% O2, more hTSCs expressed the stem cell markers nucleostemin, Oct-4, Nanog and SSEA-4. In an in vivo experiment, we found that when both cell groups were implanted with tendon-derived matrix, more tendon-like structures formed in the 5% O2 treated hTSCs than in 20% O2 treated hTSCs. Additionally, when both cell groups were implanted with Matrigel, the 5% O2 treated hTSCs showed more extensive formation of fatty, cartilage-like and bone-like tissues than the 20% O2 treated cells. Together, the findings of this study show that oxygen tension is a niche factor that regulates the stemness of hTSCs, and that less oxygen is better for maintaining hTSCs in culture and expanding them for cell therapy of tendon injuries.  相似文献   

16.
The purpose of this study was to determine the effects of exercise intensity on lipid and lipoprotein metabolism. Concentrations of triglyceride, cholesterol, high-density lipoprotein cholesterol (HDL-C) and its subfractions (HDL2-C and HDL3-C), low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, and apolipoproteins A-I, A-II, and B were measured. Ten well-trained runners completed treadmill exercise on two different occasions: a high-intensity session at 75% maximal oxygen consumption lasting 60 min and a low-intensity session at 50% maximal oxygen consumption lasting 90 min. Energy expenditure for each session was equal. Fasted blood samples were obtained 24 h before, immediately before, immediately after, and 1, 24, 48, and 72 h after each exercise session. No significant differences were found for the blood variables across time or between treatments. However, HDL-C and HDL2-C were slightly elevated on the days after each treatment. These results suggest that acute exercise sessions lasting less than 90 min, regardless of intensity, do not elicit plasma lipid, lipoprotein, and apolipoprotein changes in men who are habitually physically active and have high initial concentrations of HDL-C.  相似文献   

17.
Various oxygen tensions are employed for in vitro embryo production. Since it is known that oxygen tension can influence the efficiency of embryo production and embryo quality, the aim of our study was to define an optimal oxygen concentration for bovine embryo production in vitro in synthetic oviduct fluid (SOF). Embryo quality criteria were hatching ability and the degree of apoptosis as assessed by TUNEL staining and Bax gene expression. In Experiment 1, the effects of 2, 5 and 20% O(2) tensions on embryo development were compared. The highest rate of eight-cell embryos (47%) at 72 hpi was obtained under 20% O(2). However, it seemed that 2 and 5% O(2) were also suitable as assessed by embryo survival rates at 144 hpi (29 and 30% at morula stage), 168 hpi (21 and 19% at blastocyst stage) and 216 hpi (14 and 17% at hatched blastocyst stage). In Experiment 2, comparisons were made between effects of 5, 20% and alternating O(2) (20% O(2) to 72 hpi and then changed to 5% O(2) up to 216 hpi) on embryo development. Alternating the O(2) tension significantly reduced the number of hatching blastocysts to 7%. Staining with TUNEL revealed that apoptosis occurred in all tested hatched blastocysts, but a significantly lower apoptotic cell ratio was found in embryos cultured under 5% O(2) (P<0.05). Total cell number of embryos cultured under 5% and alternating oxygen was significantly higher than that of other groups (P<0.05). Bax gene expression was detected by means of RT-PCR in only 2 of 66 hatched blastocysts. It can be concluded that 5% oxygen is optimal for bovine embryo culture in cell free media. Moreover, it is very likely that the apoptosis detected by TUNEL staining in this study is Bax-independent.  相似文献   

18.
目的应用无创性低氧动物模型,比较纯氧环境(pure oxygen environment,POE,100%氧)与空气环境(room air environment,RAE,21%氧)复苏对低氧新生大鼠大脑皮质神经元凋亡的影响。方法 30只SpragueDawley(SD)7日龄乳鼠在建立低氧2.5 h模型后,分别于纯氧环境与空气环境中进行复苏。实验分为正常对照组(无预缺氧和复氧实验,n=10)、纯氧环境组(POE,n=10)和空气环境组(RAE,n=10),依复苏后时间点每组又分为24 h组和72 h组,每亚组5只。按时间点取各组乳鼠大脑皮质行尼氏体染色、原位末端标记(TUNEL)技术、图像分析和透射电镜观察神经元凋亡。结果与正常对照组相比,低氧乳鼠复氧后各组大脑皮质内锥体层均可见散在的、单个的、成群的或2~4个排列成串的凋亡锥体神经元,细胞凋亡现象RAE 72 h组最明显,POE 72 h组凋亡细胞个数和面密度都较RAE 72 h组少(P0.01)。电镜下RAE 72 h组类似凋亡细胞核也较其他各组多见。结论在本动物模型POE复苏较RAE复苏早期可更能减少细胞凋亡,缓解低氧致神经元的损伤,表明纯氧早期对新生儿低氧性脑损伤有一定的保护作用。  相似文献   

19.
The optimal oxygen tension for development of preimplantation mouse embryos to the blastocyst stage in vitro was found to be between 2.5% and 5%. One- and two-cell embryos had a more sharply defined range of oxygen tension capable of supporting development than 8-cell and morula stages. At all stages of development, more embryos developed to the blastocyst stage under 5% O2 compared to the numbers of developing under higher oxygen tensions (20% and 40% O2). The blastocysts developing under 20% O2 had fewer blastomeres than those which developed under 5% O2. As the time required for development to the blastocyst stage in vitro increased, there were fewer blastomeres present at the blastocyst stage. These results indicate that the cleaving mouse embryo has an optimal oxygen requirement in vitro of about 5%. At higher oxygen tensions, fewer embryos develop to the blastocyst stage and in those which do develop, there are fewer cell divisions. If a gradient of oxygen tension exists across the blastomeres from the outside of the embryo to its centre, the blastomeres might be using this gradient to obtain imformation about their location within the embryo and respond accordingly. Thus blastomeres on the outside at a higher oxygen tension would divide at a slower rate and form trophectoderm whereas those on the inside at a lower oxygen tension would divide more rapidly and contribute to the inner cell mass.  相似文献   

20.
Oxidative damage due to the production of reactive oxygen species (ROS) is one of a number of culture-induced stresses which may compromise preimplantation embryo development in vitro. Ethylenediaminetetraacetic acid (EDTA), reduced oxygen tension, superoxide dismutase (SOD) and catalase (CAT) offer protection against oxidative stress, but few attempts have been made to determine which of these agents, or which combination, is the most effective. In particular, no systematic investigation of their actions and interactions has been made using a multifactorial experimental design. Murine zygotes were cultured in the presence or absence of 10 miccroM EDTA, SOD (100-7,000 U/ml) and CAT (50-100 U/ml) at atmospheric (20%) and reduced (5%) oxygen tensions. Blastocyst formation and hatching rates (at various time points), and cell numbers were recorded, whilst parallel groups of embryos had their consumption of pyruvate, a hydrogen peroxide scavenger, measured. All parameters interacted significantly and affected blastocyst formation, hatching rate and cell numbers but the effect of EDTA was the most pronounced. There were beneficial effects of 5% O2, CAT and SOD, while 20% O2 had a deleterious effect on development. EDTA improved blastocyst formation and hatching rates but paradoxically led to a reduction in cell number. 5% O2 was the next most significant parameter to enhance embryo development and also increased cell numbers. No differences in pyruvate uptake were apparent between the various treatment groups. The results suggest that embryo culture in EDTA-free medium under 5% O2 provides the most practical and physiological conditions for in vitro murine embryo culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号