首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Resting cells of Fusobacterium nucleatum 10953 (grown previously in a medium containing glucose) failed to accumulate glucose under aerobic or anaerobic conditions. However, the addition of glutamic acid, lysine, or histidine to anaerobic suspensions of cells caused the immediate and rapid accumulation of glucose. Except for the amino acid-dependent transport of galactose and fructose (the latter being transported at approximately one-third the rate of glucose), no other sugars tested were accumulated by the resting cells. Amino acid-dependent uptake of sugar(s) by F. nucleatum was abolished by exposure of cells to air, and under aerobic conditions the rates of fermentation of glutamic acid and lysine were less than 15% of the rates determined anaerobically. The energy necessary for active transport of the sugars (acetyl phosphate and ATP) is derived from the anaerobic fermentation of glutamic acid, lysine, or histidine. Competition studies revealed that glucose and galactose were mutual and exclusive inhibitors of transport, and it is suggested that the two sugars (Km = 14 microM) are translocated via a common carrier. The products of amino acid-dependent sugar transport were recovered from resting cells as ethanol-precipitable, high-molecular-weight polymers. Polymer formation by F. nucleatum, during growth in medium containing glucose or galactose, was confirmed by electron microscopy.  相似文献   

2.
Compartmentation of glucose 6-phosphate in hepatocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Rat hepatocytes were incubated with 14C-labelled hexoses, and the specific radioactivities of glucose 6-phosphate, glucose 1-phosphate and fructose 6-phosphate were determined. (1) When suspensions of freshly isolated hepatocytes were incubated with [14C]glucose, the specific radioactivities of glucose 1-phosphate and fructose 6-phosphate were severalfold higher than that of glucose 6-phosphate. The ratios of the specific radioactivities decreased with time of incubation. These relationships were also found when incubations were carried out with primary cultures of rat hepatocytes or with crude homogenates of hepatocytes, but not with isolated nuclei. (2) When cells were incubated with [14C]fructose, the ratios of the specific radioactivities were higher than with [14C]glucose, and also decreased with time. (3) Paired incubations were carried out with a mixture of galactose and fructose, with one or other sugar being labelled with 14C. The specific radioactivity of glucose released into the medium was greater than that of glucose 6-phosphate when fructose was labelled, but not when galactose was labelled. Furthermore, glucose 6-phosphate and glucose in the medium differed with regard to the distribution of 14C between C-1 and C-6. These results are interpreted as evidence that glucose 6-phosphate in hepatocytes does not exist as a homogeneous pool, but that subcompartments exist which are associated with glucose phosphorylation, gluconeogenesis and glycogenolysis.  相似文献   

3.
1. The isolation and properties of a mutant of Escherichia coli devoid of fructose 1-phosphate kinase activity are described. 2. This mutant grew in media containing any one of a variety of substances, including hexoses, hexose 6-phosphates, sugar acids and glucogenic substrates, at rates not significantly different from those at which the parent organism grew on these substrates. However, only the parent grew on fructose or fructose 1-phosphate. 3. Fructose and fructose 1-phosphate inhibit the growth of the mutant, but not of its parent, on other carbon sources. 4. Even though not previously exposed to fructose, the mutant took up [(14)C]fructose rapidly but to only a small extent: [(14)C]fructose 1-phosphate was identified as the predominant labelled product. In contrast, the equally rapid but more extensive uptake of [(14)C]fructose by the parent organism required prior growth in the presence of fructose.  相似文献   

4.
d-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of d-arabinose represent excellent potential sites for drug intervention since d-arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to d-arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose. Although the specific activity of the arabinose was about 25% lower with [6-(14)C]glucose than with other labels, there did not appear to be selective loss of either carbon 1 or carbon 6, suggesting that arabinose was not formed by loss of carbon 1 of glucose via the oxidative step of the pentose phosphate pathway, or by loss of carbon 6 in the uronic acid pathway. Similar labeling patterns were observed with ribose isolated from the nucleic acid fraction. Since these results suggested an unusual pathway of pentose formation, labeling studies were also done with [1-(13)C]glucose, [2-(13)C]glucose, and [6-(13)C]glucose and the cell wall arabinose was examined by NMR analysis. This method allows one to determine the relative (13)C content in each carbon of the arabinose. The labeling patterns suggested that the most likely pathway was condensation of carbons 1 and 2 of fructose 6-phosphate produced by the transaldolase reaction with carbons 4, 5, and 6 (i.e., glyceraldehyde 3-phosphate) formed by fructose-1,6 bisphosphate aldolase. Cell-free enzyme extracts of M. smegmatis were incubated with ribose 5-phosphate, xylulose 5-phosphate, and d-arabinose 5-phosphate under a variety of experimental conditions. Although the ribose 5-phosphate and xylulose 5-phosphate were converted to other pentoses and hexoses, no arabinose 5-phosphate (or free arabinose) was detected in any of these reactions. In addition, these enzyme extracts did not convert arabinose 5-phosphate to any other pentose or hexose. In addition, incubation of [(14)C]glucose 6-phosphate and various nucleoside triphosphates (ATP, CTP, GTP, TTP, and UTP) with cytosolic or membrane fractions from the mycobacterial cells did not result in formation of a nucleotide form of arabinose, although other radioactive sugars including rhamnose and galactose were found in the nucleotide fraction. Furthermore, no radioactive arabinose was found in the nucleotide fraction isolated from M. smegmatis cells grown in [(3)H]glucose, nor was arabinose detected in a large-scale extraction of the sugar nucleotide fraction from 300 g of cells. The logical conclusion from these studies is that d-arabinose is probably produced from d-ribose by epimerization of carbon 2 of the ribose moiety of polyprenylphosphate-ribose to form polyprenylphosphate-arabinose, which is then used as the precursor for formation of arabinosyl polymers.  相似文献   

5.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

6.
Glucose metabolism in mouse pancreatic islets   总被引:35,自引:22,他引:13  
1. Rates of glucose oxidation, lactate output and the intracellular concentration of glucose 6-phosphate were measured in mouse pancreatic islets incubated in vitro. 2. Glucose oxidation rate, measured as the formation of (14)CO(2) from [U-(14)C]glucose, was markedly dependent on extracellular glucose concentration. It was especially sensitive to glucose concentrations between 1 and 2mg/ml. Glucose oxidation was inhibited by mannoheptulose and glucosamine but not by phlorrhizin, 2-deoxyglucose or N-acetylglucosamine. Glucose oxidation was slightly stimulated by tolbutamide but was not significantly affected by adrenaline, diazoxide or absence of Ca(2+) (all of which may inhibit glucose-stimulated insulin release), by arginine or glucagon (which may stimulate insulin release) or by cycloheximide (which may inhibit insulin synthesis). 3. Rates of lactate formation were dependent on the extracellular glucose concentration and were decreased by glucosamine though not by mannoheptulose; tolbutamide increased the rate of lactate output. 4. Islet glucose 6-phosphate concentration was also markedly dependent on extracellular glucose concentration and was diminished by mannoheptulose or glucosamine; tolbutamide and glucagon were without significant effect. Mannose increased islet fructose 6-phosphate concentration but had little effect on islet glucose 6-phosphate concentration. Fructose increased islet glucose 6-phosphate concentration but to a much smaller extent than did glucose. 5. [1-(14)C]Mannose and [U-(14)C]fructose were also oxidized by islets but less rapidly than glucose. Conversion of [1-(14)C]mannose into [1-(14)C]glucose 6-phosphate or [1-(14)C]glucose could not be detected. It is concluded that metabolism of mannose is associated with poor equilibration between fructose 6-phosphate and glucose 6-phosphate. 6. These results are consistent with the idea that glucose utilization in mouse islets may be limited by the rate of glucose phosphorylation, that mannoheptulose and glucosamine may inhibit glucose phosphorylation and that effects of glucose on insulin release may be mediated through metabolism of the sugar.  相似文献   

7.
Phosphofructokinase was not detected in extracts of Candida 107 prepared in a variety of ways but was highly active in cells treated with toluene. Disruption of these cells destroyed activity of phosphofructokinase indicating that the enzyme is extremely labile. As patterns of labelling from [I-14C]glucose and [6-14C]glucose showed that 60% of glucose was metabolized via the pentose cycle, augmentation of this cycle is necessary to account for the high molar growth yields of this yeast. Phosphoketolases, reacting with xylulose 5-phosphate and fructose 6-phosphate, were found but the extent to which they contribute to glucose metabolism was not assessed.  相似文献   

8.
The anaerobic, Gram-negative bacillus Fusobacterium nucleatum plays a vital role in oral biofilm formation and the development of periodontal disease. The organism plays a central bridging role between early and late colonizers within dental plaque and plays a protective role against reactive oxygen species. Using a two-dimensional gel electrophoresis and mass spectrometry approach, we have annotated 78 proteins within the proteome of F. nucleatum subsp. nucleatum and identified those proteins whose apparent intracellular concentrations change in response to either O(2)- or H(2)O(2)-induced oxidative stress. Three major protein systems were altered in response to oxidative stress: (i) proteins of the alkyl hydroperoxide reductase/thioredoxin reductase system were increased in intracellular concentration; (ii) glycolytic enzymes were modified by oxidation (i.e. D-glyceraldehyde 3-phosphate dehydrogenase, and fructose 6-phosphate aldolase) or increased in intracellular concentration, with an accompanying decrease in ATP production; and (iii) the intracellular concentrations of molecular chaperone proteins and related proteins (i.e. ClpB, DnaK, HtpG, and HrcA) were increased.  相似文献   

9.
The effects of fructose on the oxidation of [1-(14)C]palmitate in a rat liver mitochondria-high speed supernatant system have been investigated. This model system permitted study of the direct effects of fructose and the metabolism of fructose on fatty acid oxidation in the near absence of fatty acid esterification. Fructose inhibited the utilization of albumin-bound [1-(14)C] palmitate in the mitochondria-supernatant system, but did not affect fatty acid utilization by isolated liver mitochondria. Although fructose decreased the ATP content in the mitochondrial-supernatant system, the level of ATP throughout the incubation period was sufficient for maximal fatty acid activation. Fructose decreased the conversion of [1-(14)C]palmitate to 14CO2 and depressed the formation of total labeled oxidation products (14CO2 + 14C-labeled ketone bodies) in this system. The results suggest that fructose metabolism inhibited fatty acid oxidation in the mitochondria-supernatant system by competitive substrate oxidation and thereby decreased utilization of the added [1-(14)C]palmitate. The ihibition of L-[L-(14)C]palmitoylcarnitine oxidation, fructose was in all respects similar to its inhibition of palmitate oxidation, indicating that the site of fructose interaction was within the beta-oxidation sequence. These observations support the concept (Ontko, J.A. [1972] J. Biol. Chem. 247, 1788-1800) that the reciprocal changes in esterification and oxidation of palmitate caused by fructose in liver cells are primarily mediated via inhibitory effects on long-chain fatty acid oxidation.  相似文献   

10.
Glucose metabolism in normal and virus-transformed chick embryo fibroblast cells in culture was observed by allowing the cells to metabolize [U-14C]glucose plus glucose labeled with tritium in the C-1, C-3, and C-6 positions. Similarities and differences between normal and transformed cells were observed and measured. Both normal and transformed cells are found to metabolize about 20% of the glucose via the oxidative pentose phosphate cycle, with the rates being about twice as much for transformed cells as for normal cells under the chosen conditions. Nevertheless, the ratio of glucose metabolized via oxidative pentose cycle to the net flow of that metabolized directly to fructose 6-phosphate is about the same in normal and transformed cells. Although the rate of flow of [14C]glucose into the tricarboxylic acid cycle intermediates and amino acids derived from them appears to be the same in normal and transformed cells, the rate of tritium incorporation from H3HO into these intermediates seems to be much higher in normal cells.  相似文献   

11.
1. The metabolism of glucose 6-phosphate in rat cerebral-cortex slices in vitro was compared with that of glucose. It was found that a glucose 6-phosphate concentration of 25mm was required to achieve maximal oxygen uptake rates and ATP concentrations, whereas only 2mm-glucose was required. 2. When 25mm-[U-(14)C]glucose 6-phosphate was used as substrate, the pattern of labelling of metabolites was found to be quantitatively and qualitatively similar to the pattern found with 10mm-[U-(14)C]glucose, except that incorporation into [(14)C]lactate was decreased, and significant amounts of [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate were formed. 3. Unlabelled glucose (10mm) caused a tenfold decrease in the incorporation of 25mm-[U-(14)C]glucose 6-phosphate into all metabolites except [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate. In contrast, unlabelled glucose 6-phosphate (25mm) had no effect on the metabolism of 10mm-[U-(14)C]glucose other than to increase markedly the incorporation into, and amount of, [(14)C]lactate, the specific radioactivity of this compound remaining approximately the same. 4. The effect of glucose 6-phosphate in increasing lactate formation from glucose was found to occur also with a number of other phosphate esters and with inorganic phosphate. Further investigation indicated that the effect was probably due to binding of medium calcium by the phosphate moiety, thereby de-inhibiting glucose uptake. 5. Incubations carried out in a high-phosphate high-potassium medium gave a pattern of metabolism similar to that found when slices were subjected to depolarizing conditions. Tris-buffered medium gave similar results to bicarbonate-buffered saline, except that it allowed much less lactate formation from glucose. 6. Part of the glucose formed from glucose 6-phosphate was extracellular and was produced at a rate of 12mumol/h per g of tissue in Krebs tris medium when glycolysis was blocked. The amount formed was much less when 25mm-P(i) or 26mm-HCO(3) (-) was present, the latter being in the absence of tris. 7. Glucose 6-phosphate also gave rise to an intracellular glucose pool, whereas no intracellular glucose was detectable when glucose was the substrate.  相似文献   

12.
1. Incubation of hepatocytes from fed or starved rats with increasing glucose concentrations caused a stimulation of lactate production, which was further increased under anaerobic conditions. 2. When glycolysis was stimulated by anoxia, [fructose 2,6-bis-phosphate] was decreased, indicating that this ester could not be responsible for the onset of anaerobic glycolysis. In addition, the effect of glucose in increasing [fructose 2,6-bisphosphate] under aerobic conditions was greatly impaired in anoxic hepatocytes. [Fructose 2,6-bisphosphate] was also diminished in ischaemic liver, skeletal muscle and heart. 3. The following changes in metabolite concentration were observed in anaerobic hepatocytes: AMP, ADP, lactate and L-glycerol 3-phosphate were increased; ATP, citrate and pyruvate were decreased: phosphoenolpyruvate and hexose 6-phosphates were little affected. Concentrations of adenine nucleotides were, however, little changed by anoxia when hepatocytes from fed rats were incubated with 50 mM-glucose. 4. The activity of ATP:fructose 6-phosphate 2-phosphotransferase was not affected by anoxia but decreased by cyclic AMP. 5. The role of fructose 2,6-bisphosphate in the regulation of glycolysis is discussed.  相似文献   

13.
The kinase and sugar phosphate exchange reactions of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by treatment with 5'-p-fluorosulfonylbenzoyladenosine or 8-azido-ATP, but activity could be restored by the addition of dithiothreitol. This inactivation was accompanied by incorporation of 5'-p-sulfonylbenzoyl[8-14C]adenosine into the enzyme that was not released by the addition of dithiothreitol. The lack of effect of ATP analogs on the ATP/ADP exchange or on bisphosphatase activity and reversal of their effects on the kinase and sugar phosphate reactions by dithiothreitol suggest that 1) they reacted with sulfhydryl groups important for sugar phosphate binding in the kinase reaction, and 2) the inactivation of the kinase by these analogs involves a specific reaction that is not related to their general mechanism of attacking nucleotide-binding sites. In addition, alkylation of the enzymes' sulfhydryls with iodoacetamide prevented inactivation by 5'-p-fluorosulfonylbenzoyladenosine, suggesting that the same thiols were involved. o-Iodosobenzoate inactivated the kinase and sugar phosphate exchange; the inactivation was reversed by dithiothreitol; but there was no effect on the bisphosphatase or nucleotide exchange, indicating that oxidation occurred at the same sulfhydryl that are associated with sugar phosphate binding. ATP or ADP, but not fructose 6-phosphate, protected these groups from modification by 5'-p-fluorosulfonylbenzoyladenosine, 8-azido-ATP, and o-iodosobenzoate. ATP also induced dramatic changes in the circular dichroism spectrum of the enzyme, suggesting that adenine nucleotide protection of thiol groups resulted from changes in enzyme secondary structure. Analysis of cyanogen bromide fragments of 14C-carboxamidomethylated enzyme showed that all radioactivity was associated with cysteinyl residues in a single cyanogen bromide fragment. Three of these cysteinyl residues are clustered in a 38-residue region, which probably plays a role in maintaining the conformation of the kinase sugar phosphate-binding site.  相似文献   

14.
The effects of D-glyceraldehyde on the hepatocyte contents of various metabolites were examined and compared with the effects of fructose, glycerol and dihydroxyacetone, which all enter the glycolytic/gluconeogenic pathways at the triose phosphate level. D-Glyceraldehyde (10 MM) caused a substantial depletion of hepatocyte ATP, as did equimolar concentrations of fructose and glycerol. D-Glyceraldehyde and fructose each caused a 2-fold increase in fructose 1,6-bisphosphate and the accumulation of millimolar quantities of fructose 1-phosphate in the cells. D-Glyceraldehyde caused an increase in the glycerol 3-phosphate content and a decrease in the dihydroxyacetone phosphate content, whereas dihydroxyacetone increased the content of both metabolites. The increase in the [glycerol 3-phosphate]/[dihydroxyacetone phosphate] ratio caused by D-glyceraldehyde was not accompanied by a change in the cytoplasmic [NAD+]/[NADH] ratio, as indicated by the unchanged [lactate]/[pyruvate] ratio. The accumulation of fructose 1-phosphate from D-glyceraldehyde and dihydroxyacetone phosphate in the hepatocyte can account for the depletion of the intracellular content of the latter. Presumably ATP is depleted as the result of the accumulation of millimolar amounts of a phosphorylated intermediate, as is the case with fructose and glycerol. It is suggested that the accumulation of fructose 1-phosphate during hepatic fructose metabolism is the result of a temporary increase in the D-glyceraldehyde concentration because of the high rate of fructose phosphorylation compared with triokinase activity. The equilibrium constant of aldolase favours the formation and thus the accumulation of fructose 1-phosphate.  相似文献   

15.
In tumoral islet cells (RINm5F line) the phosphorylation of D-fructose is catalyzed by hexokinase rather than fructokinase. Fructose 6-phosphate appears to be preferentially channelled into the pentose cycle, as suggested by a ratio of D-[1-14C]fructose/D-[U-14C]fructose oxidation close to 2.7, the failure to generate 14C-labelled lactate from D-[1-14C]fructose and a poor metabolic response to menadione. When the islet cells are exposed to both D-fructose and D-glucose, however, the metabolism of the former hexose is dramatically modified, fructose 6-phosphate being now formed at a lower rate and preferentially channelled into the glycolytic pathway. These findings illustrate the existence of regulatory steps in fructose catabolism located distally to its site of phosphorylation.  相似文献   

16.
Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C enrichment and isotopomer population, measured by nuclear magnetic resonance and gas chromatography-mass spectrometry, of the actinomycin D peptide ring enabled us to specify the origins of the five amino acids of actinomycin D. Threonine and proline exhibited isotopomer populations similar to that of the extracellular L-[13C]glutamate, indicating that protein catabolism is the origin of their 13C label, whereas the isotopomer populations of sarcosine and N-methylvaline were similar to those of the new intracellular pool of S. parvulus that originated from D-[U-13C]fructose during the production of actinomycin D.  相似文献   

17.
A partially purified preparation of α-glucan phosphorylase was obtained from chloroplasts of Pisum sativum by ion-exchange chromatography and gel filtration. The preparation, in which no other enzyme that metabolized starch or glucose 1 -phosphate could be detected, was characterized. The optimum for phosphorolysis was pH 7.2; at pH 8.0 the activity was reduced by 50%. The preparation showed normal hyperbolic kinetics with the substrates, and catalysed the formation of [14C]glucose 1-phosphate from 14C-labelled starch grains from pea chloroplasts. None of the following, generally at 5 and 10 mM, significantly altered the rate of phosphorolysis: glucose, fructose, sucrose, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate, 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, pyruvate, ATP, ADP, AMP, 6-phosphogluconate, 2-phosphoglycollate, Mg2+, dithiothreitol. However, phosphorolysis was inhibited by ADPglucose. Measurements of ADPglucose in leaves and in isolated chloroplasts showed that none could be detected in the dark and suggested that the concentration in the light was high enough to cause a modest inhibition of the phosphorylase. The control of the breakdown of chloroplast starch is discussed.  相似文献   

18.
The mechanism of rabbit muscle phosphofructokinase was investigated by measurement of fluxes, isotope trapping and steady-state velocities at pH8 in triethanolamine/HCl buffer with 4 mM free Mg2+. Most observations were made at I0.2. The ratio Flux of fructose 1,6-bisphosphate----fructose 6-phosphate/Flux of fructose 1,6-bisphosphate----ATP at zero ATP concentration increased hyperbolically from unity to about 3.2 as the concentration of fructose 6-phosphate was increased. Similarly, the ratio Flux of fructose 1,6-bisphosphate----ATP/Flux of fructose 1,6-bisphosphate----fructose 6-phosphate at zero fructose 6-phosphate concentration increased from unity to about 1.4 as the concentration of ATP was increased. The addition of substrates must therefore be random, whatever the other aspects of the reaction. Further, from the plateau values of the ratios, it follows that the substrates dissociate very infrequently from the ternary complex and that at a low substrate concentration 72% of the reaction follows the pathway in which ATP adds first to the enzyme. Isotope-trapping studies with [32P]ATP confirmed that ATP can bind first to the enzyme in rate-limiting step and that dissociation of ATP from the ternary complex is slow in relation to the forward reaction. No isotope trapping of [U-14C]-fructose 6-phosphate could be demonstrated. The ratios Flux of ATP----fructose 1,6-bisphosphate/Flux of ATP----ADP measured at zero ADP concentration and the reciprocal of the ratio measured at zero fructose 1,6-bisphosphate concentration did not differ significantly from unity. Calculated values for these ratios based on the kinetics of the reverse reaction and assuming ordered dissociations of products or a ping-pong mechanism gave values very significantly greater than unity. These findings exclude an ordered dissociation or a substantial contribution from a ping-pong mechanism, and it is concluded that the reaction is sequential and that dissociation of products is random. Rate constants were calculated for the steps in the enzyme reaction. The results indicate a considerable degree of co-operativity in the binding between the two substrates. The observations on phosphofructokinase are discussed in relation to methods of measurement and interpretation of flux ratios and in relation to the mechanism of other kinase enzymes.  相似文献   

19.
The effect of extracellular ATP, a nucleotide receptor agonist in the central nervous system, was investigated in glioma C6 cells on the intracellular Ca2+ level and the formation of phosphatidylethanol and phosphatidic acid in the presence and absence of ethanol (150 mM). In the cells prelabeled with [14C]palmitic acid, 100 microM ATP induced both the hydrolysis and the transphosphatidylation reactions leading to the formation of [14C]phosphatidic acid; addition of ethanol generated [14C]phosphatidylethanol. However, ATP-mediated increase in the level of [14C]phosphatidic acid was not inhibited by ethanol. Furthermore, ethanol augmented ATP-induced transient and sustained increase in the intracellular Ca2+ concentration, whereas ethanol alone did not produce any change in the intracellular Ca2+ level. These results indicate that in glioma C6 cells, ATP induces activation of polyphosphoinositide-specific phospholipase C and phospholipase D and that ethanol enhances this effect. In the present investigation we have also shown that long-term (2 days) ethanol treatment, at concentration relevant to chronic alcoholism (100 mM), decreased the incorporation of [14C]serine into phosphatidylserine. Since the effect of ethanol on ATP-induced activities of phospholipase C and phospholipase D and on serine base-exchange in glioma C6 cells differs significantly from that in cultured neuronal cells, these results may contribute to a better understanding of the mechanisms of ethanol action in cells of glial origin.  相似文献   

20.
A fructose diphosphatase–phosphofructokinase substrate cycle has been reconstructed in vitro to provide a system that recycles fructose 6-phosphate and hydrolyses ATP to ADP and Pi. The concerted actions of glucose phosphate isomerase, phosphofructokinase, aldolase and triose phosphate isomerase catalysed the loss of 3H from [5-3H,U-14C]glucose 6-phosphate. This was used as the basis of a method for the estimation of the fructose diphosphatase–phosphofructokinase substrate cycle. For the reconstructed cycle, the rate of decrease of the 3H/14C ratio in [5-3H,U-14C]hexose 6-phosphate was proportional to the rate of fructose 6-phosphate substrate cycling. A detailed theoretical treatment of this relationship is developed, which enables the rate of substrate cycling to be determined in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号