首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensory nerve formations (or corpuscles) of normal human glabrous skin from hand and fingers, obtained by punch biopsies, were studied by the streptavidin-biotin method using monoclonal antibodies directed against neurofilament protein (NFP), S-100 protein, glial fibrillary acidic protein (GFAP), cytokeratins, and vimentin. NFP immunoreactivity (IR) was observed in the central axons of most sensory formations, while S-100 protein IR was restricted to non-neuronal cells forming the so-called inner cells core or lamellar cells. Furthermore, vimentin IR was found in the same cells of Meissner's and glomerular corpuscles. None of the sensory nerve formations were stained for GFAP or keratin. The present results suggest that the main nature of the intermediate filaments of the non-neuronal cells of sensory nerve formations from human glabrous skin is represented by vimentin and not by GFAP. Thus, our findings suggest that lamellar and inner core cells of SNF are modified and specialized Schwann cells and not epithelial or perineurial derived cells.  相似文献   

2.
A re-evaluation of the cytology of cat Pacinian corpuscles   总被引:1,自引:0,他引:1  
Summary The ultrastructure of cat mesenteric Pacinian corpuscles in cross and longitudinal sections has been examined. The terminal ends of lamellar cells of the inner core have been identified in longitudinal sections through the proximal portion of the inner core. These terminal bulbous expansions contain characteristic concentric membranes of rough endoplasmic reticulum and in some cases masses of oval membranous inclusions. The central axon as seen in cross section is oval in profile, having X-(short) and Y-(long) axes, and each axonal face is characterized by specializations of the axolemma. At the X-axis, the inner lamellae of the inner core tightly abut a smooth axolemma, with no intervening connective tissue matrix, in a manner reminiscent of a neuroepithelium. The axolemma of the Y-axis has numerous axonal spines (microspikes) that project into the cleft in the inner core. The extent of the axolemma having axonal spines can only be appreciated in longitudinal sections. The clefts contain a specialized connective tissue with elastic and collagen fibrils. The connective tissue compartment of fibers and matrix separating individual inner core lamellae is unique, in that it contains extremely thin collagen fibrils measuring approximately 15 nm in diameter. The diameter of collagen fibrils increases as the cleft is approached. Here the fibrils resemble typical endoneural collagen.  相似文献   

3.
Summary The ultrastructure of Pacinian corpuscles located on the crural interosseous membrane was studied in adult rats 6 h to 10 months after transection of the right sciatic nerve. Axon terminals degenerated one day after transection and were engulfed and resorbed by cells of the inner core within one week. The axial space left after removal of the axonal debris was closed by the lamellae of the inner core. The main structural features of the inner core and capsule remained preserved after denervation throughout the period of study. The denervated inner cores, however, became atrophic 10 months after neurotomy, their mean diameter being reduced by 17.5% compared with that of contralateral control corpuscles. The number of capsular lamellae was unaltered, and perineurial pathways of the peripheral nerve stump remained preserved. Schwann cells proliferated and formed Büngner bands during the first month after denervation, but retracted their processes and became atrophic at later stages after neurotomy.Survival of Pacinian corpuscles after long-term denervation in adult rats is in contrast to their rapid degeneration within several days after nerve section in neonates.  相似文献   

4.
The ultrastructure of the spray-like ramified encapsulated corpuscles with the primitive inner core from the joint capsules of the large limb joints of the tortoise (Testudo graeca and Emys orbicularis) was examined. Each of the branches of the receptor consists of three components. Through the middle of the receptor branche runs the nerve terminal, containing in the receptor matrix numerous mitochondria, tiny light vesicles and neurofilaments and neurotubules running in the axial way. The nerve terminal gives off on some places among the inner core cells tiny finger-like processes. The axon is surrounded by the inner core cells and their irregular plasmatic processes. Among the inner core cells and their irregular plasmatic processes there is a labyrinth of spaces, connected centrally with the periaxonal space and with the boundary space on the periphery. The inner core cells are covered on the surface, turning to the boundary space by the basal membrane. The inner core has a very primitive structure, it still lacks the typical lamellar structure. The capsule of the receptor is formed by flat cells, which surround the inner core in 1--3 layers. Between the capsule of the receptor and the inner core is the boundary space, containihg sporadical collagenous fibrils. The structure of the spray-like ramified encapsulated corpuscles with the primitive inner core from the joint capsules of the tortoise is analogous to the simple lamellar receptors from the skin of some reptiles (Von Düring 1973, 1974). The primitive structure of the inner core of the joint receptors in the tortoise reminds of the structure of the inner core of the developing simple (paciniform) corpuscles (Polá?ek and Halata 1970) and Pacinian corpuscles (Malinovsky 1974). The observed nerve endings represent a primitive, early stage in phylogeny development of the lamellar mechanoreceptors.  相似文献   

5.
Immunocytochemical demonstration of protein kinase C (PKC) subspecies (alpha, beta, gamma) was carried out in Pacinian corpuscles of rat hind feet using monoclonal or polyclonal antibodies against each of these subspecies. The inner core cells and lamellae and the Schwann cell cytoplasm of the nerve fiber innervating the corpuscle were strongly positive for PKC alpha-immunoreactivity (IR). In contrast, the axon terminal and the outer core did not display any positive alpha-IR. Very weak PKC beta-IR was detected in the ultraterminal region of the axon terminal, while the trunk region showed no immunoreactivity. Very faint PKC beta-IR was found also in the lamellar cells located at the periphery of the inner core and the endoneurial fibroblasts in the intermediate layer. PKC gamma-IR was not detected in any part of the corpuscle. The strong PKC alpha-IR in the inner core and the presence or absence of PKC alpha-, beta-, and gamma-IR in the axon terminal are discussed from the point of view of the functional aspects of each part.  相似文献   

6.
The ultrastructure of sensory nerve endings was examined in the snout skin in 3 adult hedgehogs (Erinaceus europaeus). The material was taken intravitally under total anaesthesia and processed in a usual way for the electron microscopy. The corpuscles were evaluated in the individual sections and series sections made through the whole corpuscle. In the superficial layers of the dermis simple sensory corpuscles and free endings were found. The simple sensory corpuscles can be divided into three types. a) Corpuscles containing a greater number of lamellae in the inner core, the lamellae are arranged regularly and are separated by two opposite clefts. The capsule is formed by only several lamellae undoubtedly of fibrocytic origin. b) Corpuscles containing a smaller number of wider lamellae in the inner core situated often at random. The clefts are also irregular and are often closed in the superficial layers of the inner core. The capsule is quite simple mostly formed by a single lamella of fibrocyte which often fails to form a continuous coat of the corpuscle. c) The third type is typical of its inner core being formed by few lamellae arranged irregularly. These corpuscles have no connective tissue capsule and are separated from the environments only by the basement membrane of superficial lamellae of the inner core. The corpuscles of the second type resemble considerably the developmental stages of simple sensory corpuscles as described in the literature in the cat. They are the same in size or smaller than the corpuscles of the first type. The free nerve endings occurred in two forms. a) Flattened (lanciform) nerve terminals. The axon is rich in mitochondria. The sides of the flattened terminal is lined with one to three wide lamellae while the axon reaches as far as the surface of the formation which is covered only with the basement membrane. b) Typical free endings rich in mitochondria which are embedded in the cytoplasm of Schwann cells or occasionally are covered only with the basement membrane. The lanciform endings which are not linked up with the hairs here may represent a transition from free endings to simple sensory corpuscles.  相似文献   

7.
Summary The ultrastructure of Pacinian corpuscles of the cat located in the crural region and innervated by the interosseous nerve was studied 1 to 14 months after denervation. Both the Pacinian inner core and capsule remained well preserved one month after denervation. However, the denervated inner cores underwent progressive atrophy and wasting, which resulted in a gradual reduction of the amount of inner-core cells and lamellae, widening of interlamellar clefts, formation of empty spaces in the axial region and a considerable increase in the number of collagen fibrils. In spite of the wasting, the inner core still survived 14 months after denervation, but at least half of its volume became occupied by collagen fibrils which surrounded the remaining inner-core cells and lamellae. Collagen fibrils assembled in the denervated core were markedly thinner than those found in the capsule, as is also the case in normal Pacinian corpuscles. In the capsule, discrete focal degeneration, occasional pyknosis of the innermost capsular cells and macrophage infiltration were observed from the first month after nerve section onward, but the number of capsular layers remained within the normal range (30–40) up to 14 months after denervation.  相似文献   

8.
Fluoride-resistant acid phosphatase (extralysosomal) activity has been investigated in Pacinian sensory corpuscles from cat's mesentery. The activity was found in the innermost and intermediate layers of the capsular system, but it is not possible to establish its exact localization. The central axon and the inner core were FRAP negative. The authors discuss the possible functional significance of FRAP activity in sensory corpuscles.  相似文献   

9.
Pacinian corpuscles in the mesentery of adult cats were fixed with either glutaraldehyde, osmium tetroxide or permanganate solutions by close intra-arterial injection through the mesenteric artery, and were processed, after electron staining and Epon embedding, for electron microscopy. Better resolution of the corpuscle's ultrastructure was obtained than available heretofore. The myelinated segment of the corpuscle contains blood vessels separated from the axon by collagen fibers and 3 to 4 layers of lamellae. No blood vessels are found in the central core, though access from the vessels is afforded by diffusion through the "cleft" of the inner core. Two cell types are discernible in the inner core hemilamellae; the "clear cells" in which pinocytotic vesicles and organelles abound and reflect the greater metabolic activity of these cells, in contrast to the "dark cells." The ultraterminal is ellipsoidal in form with projections into the "cleft" which give this portion an irregular appearance in section. The terminal and ultraterminal are packed with mitochondria, and "synaptic" vesicles are seen in the ultraterminal. The innermost laminae of the inner core cells are in close apposition to the terminal and break their regular pattern of hemilamellation to surround the small ultraterminal projections at the apical part of the corpuscle.  相似文献   

10.
The effects of denervation upon the Meissner corpuscle were evaluated by sequential fingertip biopsies in 3 rhesus monkeys, following transection of all the sensory innervation of the hand. Histological techniques were used to identify changes in the neural, connective, and enzymatic components of the Meissner corpuscles. Denervation of the Meissner corpuscle resulted in rapid and complete degeneration of the axon terminal and a slowly progressive degeneration of the connective tissue component of the corpuscle, characterized by loss of lobulation, lamellar collapse, and a steadily diminishing corpuscular size. The physiological basis and the clinical implications of these findings are discussed. The literature is reviewed.  相似文献   

11.
Acid-sensing ion channels (ASICs) are the members of the degenerin/epithelial sodium channel (Deg/ENaC) superfamily which mediate different sensory modalities including mechanosensation. ASICs have been detected in mechanosensory neurons as well as in peripheral mechanoreceptors. We now investigated the distribution of ASIC1, ASIC2, and ASIC3 proteins in human cutaneous Pacinian corpuscles using immunohistochemistry and laser confocal-scanner microscopy. We detected different patterns of expression of these proteins within Pacinian corpuscles. ASIC1 was detected in the central axon co-expressed with RT-97 protein, ASIC2 was expressed by the lamellar cells of the inner core co-localized with S100 protein, and ASIC3 was absent. These results demonstrate for the first time the differential distribution of ASIC1 and ASIC2 in human rapidly adapting low-threshold mechanoreceptors, and suggest specific roles of both proteins in mechanotransduction.  相似文献   

12.
The presence of some cytoskeletal proteins related to the intermediate filaments glial fibrillary acidic protein -GFAP and vimentin) and S-100 protein has been investigated in sensory formations of the glabrous skin of the rat. A positive reaction both for S-100 protein and vimentin was found in the inner core and related cells of glomerular and simple sensory corpuscles; in contrast, no positive reaction was shown for GFAP. The authors discuss these results on the basis of the glial origin of the inner core and related cells in sensory formations.  相似文献   

13.
Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hypotheses, axons involved in double myelination in the rat superior cervical ganglion were destroyed by chronic guanethidine treatment. Guanethidine-induced sympathectomy resulted in a Wallerian-like pattern of myelin degeneration within 10 d. In doubly myelinated configurations the axon, inner myelin sheath (which lies in contact with the axon), and approximately 75% of outer myelin sheaths broke down by this time. Degenerating outer sheaths were not found at later periods. It is probably that outer sheaths that degenerated were only partially displaced from the axon at the commencement of guanethidine treatment. In contrast, analysis of serial sections showed that completely displaced outer internodes remained ultrastructurally intact. These internodes survived degeneration of the axon and inner sheath, and during the later time points (2-6 wk) they enclosed only connective tissue elements and reorganized Schwann cells/processes. Axonal regeneration was not observed within surviving outer internodes. We therefore conclude that myelin maintenance in the superior cervical ganglion is not dependent on direct axonal contact or diffusible axonal factors. In addition, physical association of Schwann cells with the degenerating axon may be an important factor in precipitating myelin breakdown during Wallerian degeneration.  相似文献   

14.
The presence of vimentin and S-100 protein in cat Pacinian corpuscles of cat mesentery has been investigated immunohistochemically (streptavidin-biotin method) using monoclonal antibodies. A positive reaction for both vimentin- and S-100 protein-like was found only in the lamellae of the inner core. The presence of vimentin and the co-expression of vimentin/S-100 protein-like in sensory corpuscles is reported for the first time. The authors discuss the origin of the inner core and capsule of sensory corpuscles on the basis of their immunohistochemical characteristics.  相似文献   

15.
ELECTRON MICROSCOPY OF THE PACINIAN CORPUSCLE   总被引:11,自引:9,他引:2       下载免费PDF全文
The Pacinian corpuscle has a framework of cytoplasmic lamellae arranged concentrically in the outer zone, and bilaterally in the core. Between these is an intermediate growth zone. The inner core shows an unexpected complexity in that its component lamellae are arranged in two symmetrical groups of nested cytoplasmic sheets. Longitudinal tissue spaces form clefts separating the two groups. The perikarya of the core lamellae lie in or near the intermediate growth zone, and send arms into the clefts. The arms then branch and terminate as lamellae which interdigitate with those of neighboring cells. The single nerve fiber loses its myelin sheath just before it reaches the inner core but retains its Schwann cell cytoplasmic covering for a short additional distance. The Schwann sheath is not continuous with the lamellae of the inner core. Inside the core the fiber contains a striking circumferential palisade of radially disposed mitochondria. The fiber does not arborize. Vascular capillaries penetrate the hilar region of the corpuscle only as far as the myelinated sheath of the nerve, and they have not been seen elsewhere in the corpuscle. There is direct continuity between the clefts of the core and tissue spaces in the vicinity of the capillaries. It is likely that this provides a route whereby metabolites reach the active nerve ending, as well as the cells of the growth zone. The outer zone consists of at least 30 flattened concentric cytoplasmic lamellae separated from one another by relatively wide fluid-filled spaces. Collagenous fibrils are present, particularly on the outer surface of lamellae, and tend to be oriented circularly. The girdle of proliferating cells constituting the growth zone, which is prominent in corpuscles from young animals, is the layer from which the outer lamellae are derived. Osmotic forces probably elevate the lamellae, and maintain turgor pressure.  相似文献   

16.
Laser beam ablation of spiral ganglion neurons was performed in seven organotypic cultures of the newborn mouse cochlea between 5 and 8 days in vitro, with a recovery period of from 18 hours to 3 days. Direct somatic injury (laser or mechanical) inflicted on hair cells does not necessarily cause their death; many of them survive, repair damage and re-establish their neurosensory connections. By contrast, laser irradiation and ablation of their afferent spiral ganglion neurons causes a most spectacular degeneration of sensory cells within 18–48 hours after the insult. Ultrastructurally, the degenerated hair cells—characteristically the inner hair cells—display “dark-cell vacuolar degeneration” that combines the signs of apoptotic death (the peripheral condensation of nuclear chromatin and nuclear pyknosis) with signs of cell edema, vacuolization and necrosis. The ultimate condensation of the cytoplasm gives the dead cells a jet black appearance. The irradiated spiral ganglion neurons die displaying similar pathological characteristics. The extent and locus of inner hair cell degeneration correspond to that of ablated spiral ganglion neurons: ultimately the ablation of one neuron causes degeneration of a single inner hair cell within the closest radial segment of the afferent innervation. The elimination of spiral ganglion neurons by mechanical means does not affect hair cell survival. It is inferred that the laser pulse acts as a stimulus depolarizing the neuronal membrane of the spiral ganglion neurons and their radial fibers and causing the excitotoxic death of their synaptic sensory cells through excessive stimulation of the glutamatergic receptors. Reciprocal pre-and postsynaptic synapses between the afferent dendrites and inner hair cells in culture could possibly serve as entryways of the stimulus. The pathogenesis of this apparent transsynaptically-induced apoptotic death of inner hair cells will be further examined in culture.  相似文献   

17.
Rieger S  Sagasti A 《PLoS biology》2011,9(5):e1000621
Functional recovery from cutaneous injury requires not only the healing and regeneration of skin cells but also reinnervation of the skin by somatosensory peripheral axon endings. To investigate how sensory axon regeneration and wound healing are coordinated, we amputated the caudal fins of zebrafish larvae and imaged somatosensory axon behavior. Fin amputation strongly promoted the regeneration of nearby sensory axons, an effect that could be mimicked by ablating a few keratinocytes anywhere in the body. Since injury produces the reactive oxygen species hydrogen peroxide (H(2)O(2)) near wounds, we tested whether H(2)O(2) influences cutaneous axon regeneration. Exposure of zebrafish larvae to sublethal levels of exogenous H(2)O(2) promoted growth of severed axons in the absence of keratinocyte injury, and inhibiting H(2)O(2) production blocked the axon growth-promoting effects of fin amputation and keratinocyte ablation. Thus, H(2)O(2) signaling helps coordinate wound healing with peripheral sensory axon reinnervation of the skin.  相似文献   

18.
Axon degeneration is a feature of many peripheral neuropathies. Understanding the organismal response to this degeneration may aid in identifying new therapeutic targets for treatment. Using a transgenic zebrafish line expressing a bacterial nitroreductase (Ntr)/mCherry fusion protein in the peripheral sensory neurons of the V, VII, IX, and X cranial nerves, we were able to induce and visualize the pathology of axon degeneration in vivo. Exposure of 4 days post fertilization Ntr larvae to the prodrug metronidazole (Met), which Ntr metabolizes into cytotoxic metabolites, resulted in dose-dependent cell death and axon degeneration. This was limited to the Ntr-expressing sensory neurons, as neighboring glia and motor axons were unaffected. Cell death was rapid, becoming apparent 3–4 hours after Met treatment, and was followed by phagocytosis of soma and axon debris by cells within the nerves and ganglia beginning at 4–5 hours of exposure. Although neutrophils appear to be activated in response to the degenerating neurons, they did not accumulate at the sites of degeneration. In contrast, macrophages were found to be attracted to the sites of the degenerating axons, where they phagocytosed debris. We demonstrated that peripheral glia are critical for both the phagocytosis and inflammatory response to degenerating neurons: mutants that lack all peripheral glia (foxD3−/−; Ntr) exhibit a much reduced reaction to axonal degeneration, resulting in a dramatic decrease in the clearance of debris, and impaired macrophage recruitment. Overall, these results show that this zebrafish model of peripheral sensory axon degeneration exhibits many aspects common to peripheral neuropathies and that peripheral glia play an important role in the initial response to this process.  相似文献   

19.
Summary The organization of collagen fibrils in the rat sciatic nerve was studied by scanning electron microscopy after digestion of cellular elements by sodium hydroxide treatment, and by conventional transmission electron microscopy. The epineurium consisted mainly of thick bundles of collagen fibrils measuring about 10–20 m in width; they were wavy and ran slightly obliquely to the nerve axis. Between these collagen bundles, a very coarse meshwork of randomly oriented collagen fibrils was present. In the perineurium, collagen fibrils occupied the interspaces between the concentrically arranged perineurial cells; in each interspace, they formed a sheet of characteristic lacework elaborately interwoven by thin (about 3 m or less in width) bundles of collagen fibrils. In the subperineurial region, there was a distinct sheet of densely woven collagen fibrils between the perineurium and underlying endoneurial fibroblasts. In the endoneurium, collagen fibrils surrounded individual nerve fibers in two layers as scaffolds: the inner layer was made up of a delicate meshwork of very fine collagen fibrils, and the outer one consisted of longitudinally oriented bundles of about 1–3 m in width. The collagen fibril arrangement described above may protect the nerve fibers against external forces.  相似文献   

20.
Comparative histological observations of the eyes of Typhlotriton spelaeus and several epigean, plethodontid species indicate that the principal postembryonic degenerative changes in the eyes of T. spelaeus involve the eyelids and cornea, visual cells, outer plexiform layer, and the pigment epithelium. Ordinarily these changes were initiated after metamorphosis, before attainment of sexual maturity, but a few larvae had degenerating retinae. The corneal epithelium becomes irregular and thin as eyelids develop during and after metamorphosis, but retains its larval structure in animals in which eyelid overlap is incomplete. Disruption and vacuolation of the lens sometimes occurs in postmetamorphic animals with degenerating visual cells. Retinal degeneration involves reduction of the inner and outer segments of visual cells, loss of the outer plexiform layer, and retraction of apical processes of the pigment epithelium. In its earliest stage, retinal reduction is first apparent at the retinal margin where visual cells are normally less well-differentiated, but in its terminal stage reduction has gone to completion over the entire retina. Extent of retinal degeneration in adults is directly related to postmetamorphic age but there is variability in each age group. Females generally have smaller eyes, and more extensive degeneration of visual cells than males. The loss of visual function in adults is correlated with extensive visual cell degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号