首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid method for purifying Torpedo electric organ vesicles is described, which employs an isoosmotic continuous sucrose-glycine gradient followed by chromagography on CPG-10-3000 porous glass beads. The synaptic vesicles have a buoyant density of 1.057 g/ml. The purified vesicles are free of cholinesterase, lactate dehydrogenase and Na+, K+-stimulated ATPase activity. They contain a ouabaininsensitive, Na+, K+-inhibited, Mg2+, Ca2+-stimulated ATPase activity. This is further stimulated by acetylcholine but not by choline.  相似文献   

2.
Rabbits were immunized with cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata. The resultant antiserum had one major antibody activity against an antigen called the Torpedo vesicle antigen. This antigen could not be demonstrated in muscle, liver or blood and is therefore, suggested to be nervous-tissue specific. The vesicle antigen was quantified in various parts of the nervous system and in subcellular fractions of the electric organ of Torpedo marmorata and was found to be highly enriched in synaptic vesicle membranes. The antigen bound to concanavalin A, thereby demonstrating the presence of a carbohydrate moiety. By means of charge-shift electrophoresis, amphiphilicity was demonstrated, indicating that the Torpedo vesicle antigen is an intrinsic membrane protein. The antigen was immunochemically unrelated to other brain specific proteins such as 14-3-2, S-100, the glial fibrillary acidic protein and synaptin. Furthermore, it was unrelated to two other membrane proteins, the nicotinic acetylcholine receptor and acetylcholinesterase, present in Torpedo electric organ. The antiserum against Torpedo synaptic vesicles did not react with preparations of rat brain synaptic vesicles or ox adrenal medullary chromaffin granules.  相似文献   

3.
Summary Semiquantitative immunohistochemical methods were used to demonstrate that at least some of the glycosaminoglycan contained within cholinergic synaptic vesicles is recycled during successive electrical stimulations of the electric organ of Torpedo marmorata.  相似文献   

4.
D A Lee  V Witzemann 《Biochemistry》1983,22(26):6123-6130
We have employed azido derivatives of ATP and AMP to identify the ATP translocase of synaptic vesicles. Azido-AMP inhibits transport of both ATP and AMP in vitro. The affinity of the translocase for the azido derivatives is similar to that of the native ligands. Upon UV irradiation of vesicles incubated with radiolabeled azido-AMP or -ATP, a molecular weight (Mr) 34000 polypeptide is selectively modified. On two-dimensional gel electrophoresis, the single radiolabeled polypeptide has a pI of approximately 7.7. Analysis of the fractions obtained when vesicles were purified on linear sucrose density gradients reveals that the Mr 34000 polypeptide is highly enriched in the vesicle-containing fractions. The findings support the notion that this polypeptide is identical with a previously described vesicle-specific component of the same molecular size [Stadler, H., & Tashiro, T. (1979) Eur. J. Biochem. 101, 171-178], and we conclude on the basis of uptake inhibition and photoaffinity labeling results that this protein is directly involved in ATP translocation of synaptic vesicles.  相似文献   

5.
We have employed sulfhydryl group reagents in an attempt to determine the mechanism by which the transport of nucleotides into synaptic vesicles is controlled. Transport proved to be sensitive to N-ethylmaleimide; radiolabelled N-ethylmaleimide was used to locate the sulfhydryl group to the translocase-associated molecule previously identified as a polypeptide of Mr 34,000 [Lee and Witzemann (1983) Biochemistry 22, 6123-6130]. The nucleotide uptake was 75% inhibited by the mercurials rho-hydroxymercuribenzoate and rho-chloromercuriphenylsulfonate. Uptake was also sensitive to the reagents phenylarsine oxide and iodosobenzoic acid, which are specific for dithiols. These results indicate that a readily accessible dithiol is critical for nucleotide transport. Using the lipophilic oxidants iodosobenzoic acid and plumbagin, we demonstrated that nucleotide uptake was inhibited upon oxidation of the dithiol but that this did not involve an alteration in the affinity of the translocase for its substrate.  相似文献   

6.
Density measurements made on cholinergic synaptic vesicles from the electric organs of Torpedo marmorata at different osmotic pressures are consistent with the following structural model of the vesicle. The particle behaves like a sphere 80-100 nm in diameter bounded by a semi-permeable membrane. The bulk of its soluble constituents are in true solution at physiological osmolalities. The limiting membrane is approximately 4-5 nm thick, suggesting that it contains large areas of phospholipid bilayer exposed to its bathing medium. The limiting membrane takes up about 26% (v/v) of the particle, a further 34% (v/v) of which is osmotically active water and 31% (v/v) hydrated core material at 800 mosmol/1. The buoyant density of the membrane is 1.132 g . cm-3. The density of the hydrated core material is approximately 1.05 g . cm-3. The membrane is selectively permeable to small molecules when subjected to hypo-osmotic stress. It is proposed that this occurs by the formation of small transient pores in the lipid bilayer of the membrane, which are induced by stretching caused by the osmotic pressure change.  相似文献   

7.
M Linial  K Miller  R H Scheller 《Neuron》1989,2(3):1265-1273
Expression screening was used to isolate cDNA clones encoding a synaptic vesicle membrane protein, VAT-1, which is specifically expressed in the electric lobe of marine rays. The predicted protein has a molecular weight of 41,572 daltons and contains several hydrophobic regions. An antibody raised against a fusion protein synthesized in E. coli recognizes an abundant 42 kd protein that copurifies largely with synaptic vesicles. Trypsin digestion of intact and lysed vesicles as well as membrane extractions suggests that VAT-1 is an integral membrane protein. The VAT-1 RNA is localized to the electromotor nucleus, and the fusion protein antibody stains the electric organ, demonstrating that the protein is transported to nerve terminals. These studies define a novel synaptic vesicle protein that is likely to play a central role in the functions mediated by specific classes of synaptic vesicles.  相似文献   

8.
Rabbit antisera to highly purified synaptic vesicles from the electric organ of Narcine brasiliensis, an electric ray, reveal a unique population of synaptic vesicle antigens in addition to a population shared with other electric organ membranes. Synaptic vesicle antigens were detected by binding successively rabbit antivesicle serum and radioactive goat anti-rabbit serum. To remove antibodies directed against antigens common to synaptic vesicles and other electric organ fractions, the antivesicle serum was extensively preadsorbed against an electric organ membrane fraction that was essentially free of synaptic vesicles. The adsorbed serum retained 40% of its ability to bind to synaptic vesicles, suggesting that about half of the antigenic determinants are unique. Vesicle antigens were quantified with a radioimmunoassay (RIA) that utilized precipitation of antibody-antigen complexes with Staphylococcus aureus cells. By this assay, the vesicles, detected by their acetylcholine (ACh) content and the antigens detected by the RIA, have the same buoyant density after isopycnic centrifugation of crude membrane fractions on sucrose and glycerol density gradients. The ratio of ACh to antigenicity was constant across the vesicle peaks and was close to that observed for vesicles purified to homogeneity. Even though the vesicles make up only approximately 0.5% of the material in the original homogenate, the ratio of acetylcholine to vesicle antigenicity could still be measured and also was indistinguishable from that of pure vesicles. We conclude that synaptic vesicles contain unique antigenic determinants not present to any measurable extent in other fractions of the electric organ. Consequently, it is possible to raise a synaptic vesicle- specific antiserum that allows vesicles to be detected and quantified. These findings are consistent with earlier immunohistochemical observations of specific antibody binding to motor nerve terminals.  相似文献   

9.
A monoclonal antibody, tor70, recognizes an antigenic determinant on the inside surface of synaptic vesicles, purified from the electric organ of Narcine brasiliensis. The antigenic determinant appears to be unique to vesicles since it co-purifies with vesicle content and is blocked by an antiserum specific for synaptic vesicle antigens. Immunoblotting of vesicle proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that the antigen has a low heterogeneous electrophoretic mobility and corresponds to a major protein component of pure synaptic vesicles. Synaptic vesicles contain a proteoglycan-like material since proteolytic digestion yields a ruthenium red-binding material that migrates during electrophoresis with a mammalian heparin standard. The only major vesicle component with which the proteoglycan-like material co-elutes during chromatography on Sepharose 6B is the material recognized by tor70. The antigen adsorbs specifically to beads coated with the lectin wheat germ agglutinin. Isolation of the tor70 antigen by velocity sedimentation in sodium dodecyl sulfate-sucrose gradients shows it to contain glucosamine (0.75 nmol/microgram of protein) and uronic acid but no galactosamine. Earlier work has shown that specific antiserum to pure synaptic vesicles could be used to identify nerve terminals, quantitate vesicle components, purify membranes, and monitor exocytosis. We now know that one of the components recognized by the antiserum is a molecule with properties of a proteoglycan, attached to the inside surface of vesicle membranes.  相似文献   

10.
Electrical potential changes in pure synaptic vesicles from Torpedo californica were monitored with the fluorescent dye 3,3'-dipropylthiadicarbocyanine iodide. Vesicles resuspended in variable external sodium ion in the presence of gramicidin established sodium ion membrane diffusion potentials. Vesicles resuspended in choline or acetylcholine chloride became hyperpolarized upon addition of gramicidin. Hyperpolarization was subsequently partially reversed spontaneously by choline or acetylcholine influx, which was confirmed by gel filtration, to yield a new, less negative, stable membrane potential. Thus, acetylcholine and choline are taken up electrogenically by synaptic vesicles.  相似文献   

11.
12.
A morphological comparison of neuromuscular and nerve-electroplaque synapses of torpedo was performed. Synaptic vesicles are much smaller at the neuromuscular synapse. The question of the respective role of these populations is raised.  相似文献   

13.
The nature of the G-proteins present in the pre- and post-synaptic plasma membranes and in the synaptic vesicles of cholinergic nerve terminals purified from the Torpedo electric organ was investigated. In pre- and post-synaptic plasma membranes, Bordetella pertussis toxin, known to catalyze the ADP-ribosylation of the alpha-subunit of several G-proteins, labels two substrates at 41 and 39 kDa. The 39 kDa subunit detected by ADP-ribosylation in the synaptic plasma membrane fractions was immunologically similar to the Go alpha-subunit purified from calf brain. In contrast to bovine chromaffin cell granules, no G-protein could be detected in Torpedo synaptic vesicles either by ADP-ribosylation or by immunoblotting.  相似文献   

14.
Atractyloside is known to bind to the ADP/ATP translocase of the inner mitochondrial membrane, a complex formed by two basic protein subunits of relative molecular mass around 30 000. We found that synaptic vesicles from the electric organ of Torpedo marmorata, which store acetylcholine and ATP, bind atractyloside as well. Similarly to mitochondria, a protein-atractyloside complex could be solubilized from vesicle membranes with Triton X-100. Characterization of the complex by gel filtration, isoelectric focusing and gel electrophoresis revealed that atractyloside was bound to protein V11, earlier described as a major vesicle membrane component with a relative molecular mass around 34 000 and a basic isoelectric point. Since earlier experiments have already shown that uptake of ATP into isolated vesicles in vitro is inhibited by atractyloside, we can conclude now that V11 constitutes the nucleotide carrier of this secretory organelle. The structural and functional relationship of the mitochondrial and vesicular nucleotide translocases suggest a common evolutionary origin.  相似文献   

15.
A rapid method for the preparation of highly purified cholinergic nerve endings from the electric organ of Torpedo is described. The endings retain their cytoplasmic components, as shown by biochemical and morphological observations. The homogeneity of these synaptosomes make them a useful tool for further studies.  相似文献   

16.
Cholinergic synaptic vesicles from the electric organ of Torpedocalifornica have been subjected to analytical scale separation techniques not utilized in the isolation procedure, and the ATPase activity of separated fractions determined. Most of the ATPase activity migrated with the vesicles. Sensitivity of the ATPase activity to 16 potential inhibitors also was determined. Most of the ATPase activity was inhibited by low concentrations of 4-chloro-7-nitrobenzo-oxadiazole (NBD-C1) and dicyclohexylcarbodiimide (DCCD), but not by a water soluble carbodiimide. The close association of the ATPase with the vesicles and the pattern of inhibition obtained provide further support for the authentic presence of a membrane bound Ca2+Mg2+ ATPase in the cholinergic synaptic vesicle.  相似文献   

17.
Human lung fibroblasts produce heparan sulphate proteoglycans (HSPG) that are associated with the plasma membrane. A monoclonal-antibody (Mab)-secreting hybridoma, S1, was produced by fusion of SP 2/0-AG 14 mouse myeloma cells with spleen cells from mice immunized with partially purified cellular HSPG fractions. The HSPG character of the material carrying the epitope recognized by Mab S1 was demonstrated by: (i) the co-purification of the S1 epitope with the membrane HSPG of human lung fibroblasts; (ii) the decrease in size of the material carrying the S1 epitope upon treatment with heparinase or heparitinase, and the resistance of this material to heparinase treatment after N-desulphation. The S1 epitope appears to be part of the core protein, since it was destroyed by proteinase treatment and by disulphide-bond reduction, but not by treatments that depolymerize the glycosaminoglycan chains and N-linked oligosaccharide chains. Polyacrylamide-gel electrophoresis of non-reduced heparitinase-digested membrane HSPG followed by Western blotting and immunostaining with Mab S1 revealed a single band with apparent molecular mass of 64 kDa. Membrane proteoglycans isolated from detergent extracts or from 4 M-guanidinium chloride extracts of the cells yielded similar results. Additional digestion with N-glycanase lowered the apparent molecular mass of the immunoreactive material to 56 kDa, suggesting that the core protein also carries N-linked oligosaccharides. Fractionation of 125I-labelled membrane HSPG by immuno-affinity chromatography on immobilized Mab S1, followed by heparitinase digestion and polyacrylamide-gel electrophoresis of the bound material, yielded a single labelled band with apparent molecular mass 64 kDa. Treatment with dithiothreitol caused a slight increase in apparent molecular mass, suggesting that the core protein of this membrane proteoglycan of a single subunit containing (an) intrachain disulphide bond(s).  相似文献   

18.
In receptor-rich membrane fragments from Torpedo, acetylcholine binds, in the presence of 70 muM Tetram, to a homogeneous population of high-affinity sites with Kd = (3.4 +/- 0.8) x 10(08) M. Dissolution of these membrane fragments by sodium cholate causes a decrease of affinity associated with the appearance of medium-affinity (Kd approximately 10(-7) M) and low-affinity (Kd greater than or equal to 10(-6) M) sites. Dissolution by neutral detergents Triton X-100 or Emulphogene preserves the high affinity of the acetylcholine binding sites. In all the soluble states of the receptor protein, Ca2+ ions and local anaesthetics no longer enhance the affinity for acetylcholine. Elimination of sodium cholate by dilution leads to the reassociation of the receptor protein, the recovery of high-affinity sites and the control by Ca2+ ions and local anaesthetics. Purification by affinity chromatography of the receptor protein in Triton X-100 is accompanied by a conversion of a majority of the acetylcholine sites into their state of low affinity. High-affinity sites can no longer be recovered by detergent dilution from these low-affinity ones.  相似文献   

19.
Adenosine triphosphate. A constituent of cholinergic synaptic vesicles   总被引:25,自引:2,他引:23       下载免费PDF全文
1. Synaptic vesicles separated by density-gradient centrifugation from extracts of the cholinergic nerve terminals of the electric organ of Torpedo marmorata were found to contain appreciable amounts of ATP as well as acetylcholine. 2. Vesicular ATP was stable in the presence of concentrations of apyrase and myokinase that rapidly destroyed equivalent amounts of endogenous or added free ATP; pre-treatment of cytoplasmic extracts of electric tissue with these enzymes destroyed endogenous free ATP, but did not affect the vesicular ATP. 3. When [U-(14)C]ATP was added to electric tissue at the time of comminution and extraction of the vesicles, all the radioactivity was associated with soluble components in the subsequent fractionation: none was associated with vesicles or membrane fragments; thus it is unlikely that vesicular ATP can be accounted for by the sequestration of endogenous free ATP within any vesicles formed during comminution and extraction of the tissue. 4. When synaptic vesicles were passed through iso-osmotic columns of Bio-Gel A-5m, which separates vesicles from soluble proteins and small molecules, all the recovered ATP and acetylcholine passed through together in the void volume. 5. Regression analysis showed that vesicular ATP content was highly correlated with vesicular acetylcholine content in different experiments, the molar ratio acetylcholine/ATP being 5.32+/-(s.e.m.) 0.45 (21 expts.) for the peak density-gradient fraction. The ratio varied, however, somewhat across the density-gradient peak suggesting some degree of chemical heterogeneity in the vesicle population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号