首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Dlx2, a member of the distal-less gene family, is expressed in the first branchial arch, prior to the initiation of tooth development, in distinct, non-overlapping domains in the mesenchyme and the epithelium. In the mesenchyme Dlx2 is expressed proximally, whereas in oral epithelium it is expressed distally. Dlx2 has been shown to be involved in the patterning of the murine dentition, since loss of function of Dlx1 and Dlx2 results in early failure of development of upper molar teeth. We have investigated the regulation of Dlx2 expression to determine how the early epithelial and mesenchymal expression boundaries are maintained, to help to understand the role of these distinct expression domains in patterning of the dentition. Transgenic mice produced with a lacZ reporter construct, containing 3.8 kb upstream sequence of Dlx2, led to the mapping of regulatory regions driving epithelial but not mesenchymal expression in the first branchial arch. We show that the epithelial expression of Dlx2 is regulated by planar signalling by BMP4, which is coexpressed in distal oral epithelium. Mesenchymal expression is regulated by a different mechanism involving FGF8, which is expressed in the overlying epithelium. FGF8 also inhibits expression of Dlx2 in the epithelium by a signalling pathway that requires the mesenchyme. Thus, the signalling molecules BMP4 and FGF8 provide the mechanism for maintaining the strict epithelial and mesenchymal expression domains of Dlx2 in the first arch.  相似文献   

2.
3.
Endothelin-1 (ET-1), a 21-amino acid peptide secreted by the epithelium and core mesenchyme in the branchial arches as well as vascular endothelium, is involved in craniofacial and cardiovascular development through endothelin receptor type-A (EdnrA) expressed in the neural crest-derived ectomesenchyme. Here we show that ET-1(-/-) mutant mice exhibit a homeotic-like transformation of the lower jaw to an upper jaw. Most of the maxillary arch-derived components are duplicated and replaced mandibular arch-derived structures, resulting in a mirror image of the upper and lower jaws in the ET-1(-/-) mutant. As for hyoid arch-derivatives, the ventral structures are severely affected in comparison to the dorsal ones in the ET-1(-/-) mutant. Correspondingly, the expression of Dlx5 and Dlx6, Distalless-related homeobox genes determining the ventral identity of the anterior branchial arches, and of the mandibular marker gene Pitx1 is significantly downregulated in the ET-1(-/-) mutant, whereas the expression of Dlx2 and the maxillary marker gene Prx2 is unaffected or rather upregulated. These findings indicate that the ET-1/EdnrA signaling may contribute to the dorsoventral axis patterning of the branchial arch system as a mediator of the regional intercellular interactions.  相似文献   

4.
5.
6.
7.
8.
The most rostral cephalic crest cells in the chick embryo first populate ubiquitously in the rostroventral head. Before the influx of crest cells, the ventral head ectoderm expresses Fgf8 in two domains that correspond to the future mandibular arch. Bmp4 is expressed rostral and caudal to these domains. The rostral part of the Bmp4 domain develops into the rostral end of the maxillary process that corresponds to the transition between the maxillomandibular and premandibular regions. Thus, the distribution patterns of FGF8 and BMP4 appear to foreshadow the maxillomandibular region in the head ectoderm. In the ectomesenchyme of the pharyngula embryo, expression patterns of some homeobox genes overlap the distribution of their upstream growth factors. Dlx1 and Barx1, the targets of FGF8, are expressed in the mandibular ectomesenchyme, and Msx1, the target of BMP4, in its distal regions. Ectopic applications of FGF8 lead to shifted expression of the target genes as well as repatterning of the craniofacial primordia and of the trigeminal nerve branches. Focal injection of a lipophilic dye, DiI, showed that this shift was at least in part due to the posterior transformation of the original premandibular ectomesenchyme into the mandible, caused by the changed distribution of FGF8 that defines the mandibular region. We conclude that FGF8 in the early ectoderm defines the maxillomandibular region of the prepharyngula embryo, through epithelial-mesenchymal interactions and subsequent upregulation of homeobox genes in the local mesenchyme. BMP4 in the ventral ectoderm appears to limit the anterior expression of Fgf8. Ectopic application of BMP4 consistently diminished part of the mandibular arch.  相似文献   

9.
10.
Retinoic acid (RA), an active metabolite of vitamin A, is a crucial signaling molecule involved in tissue morphogenesis during embryonic development. RA distribution and concentration is precisely regulated during embryogenesis by balanced complementary activities of RA synthesizing (RALDH) and metabolizing (CYP26) enzymes. Here, we describe the identification of a novel murine p450 cytochrome belonging to the CYP26 family, mCYP26C1. Sequence alignment show that mCYP26C1 is more closely related to mCYP26B1 than mCYP26A1. At early developmental stages (E8.0-E8.5), mCyp26C1 is expressed in prospective rhombomeres 2 and 4, in the first branchial arch and along the lateral surface mesenchyme adjacent to the rostral hindbrain. At E9.5, mCyp26C1 expression persists in rhombomere 2 and in the maxillary and mandibular components of the first branchial arch, and is strongly induced in the lateral cervical mesenchyme. By mid-gestation, mCyp26C1 is weakly expressed in the cervical mesenchyme and in the maxillary component of the first branchial arch. At E11.5, mCyp26C1 can only be seen in a narrow band in the lateral cervical mesenchyme. During late gestation, mCyp26C1 exhibits region-specific expression in the inner ear epithelium and a persistent expression in the inner dental epithelium of the developing teeth. This pattern of expression suggests that mCYP26C1 may play an important role in protecting the hindbrain, first branchial arch, otocyst and tooth buds against RA exposure during embryonic development.  相似文献   

11.
12.
The cellular origin of the instructive information for hard tissue patterning of the jaws has been the subject of a long-standing controversy. Are the cranial neural crest cells prepatterned or does the epithelium pattern a developmentally uncommitted population of ectomesenchymal cells? In order to understand more about how orofacial patterning is controlled we have investigated the temporal signalling interactions and responses between epithelium and mesenchymal cells in the mandibular and maxillary primordia. We show that within the mandibular arch, homeobox genes that are expressed in different proximodistal spatial domains corresponding to presumptive molar and incisor ectomesenchymal cells are induced by signals from the oral epithelium. In mouse, prior to E10, all ectomesenchyme cells in the mandibular arch are equally responsive to epithelial signals such as Fgf8, indicating that there is no pre-specification of these cells into different populations and suggesting that patterning of the hard tissues of the mandible is instructed by the epithelium. By E10.5, ectomesenchymal cell gene expression domains are still dependent on epithelial signals but have become fixed and ectopic expression cannot be induced. At E11 expression becomes independent of epithelial signals such that removal of the epithelium does not affect spatial ectomesenchymal expression. Significantly, however, the response of ectomesenchyme cells to epithelial regulatory signals was found to be different in the mandibular and maxillary primordium. Thus, whereas both mandibular and maxillary arch epithelia could induce Dlx2 and Dlx5 expression in the mandible and Dlx2 expression in the maxilla, neither could induce Dlx5 expression in the maxilla. Reciprocal cell transplantations between mandibular and maxillary arch ectomesenchymal cells revealed intrinsic differences between these populations of cranial neural crest-derived cells. Research in odontogenesis has shown that the oral epithelium of the mandibular and maxillary primordia has unique instructive signaling properties required to direct odontogenesis, which are not found in other branchial arch epithelia. As a consequence, development of jaw-specific skeletal structures may require some prespecification of maxillary ectomesenchyme to restrict the instructive influence of the epithelial signals and allow development of maxillary structures distinct from mandibular structures.  相似文献   

13.
Branchial arch development involves dynamic interactions between neural crest cells as well as ectodermal, endodermal and mesodermal cell populations. Despite their importance and evolutionary conservation, the intercellular interactions guiding the early development of the branchial arches are still poorly understood. We have here studied fibroblast growth factor (FGF) signalling in early pharyngeal development. In mice homozygous for a hypomorphic allele of Fgfr1, neural crest cells migrating from the hindbrain mostly fail to enter the second branchial arch. This defect is non-cell-autonomous suggesting that Fgfr1 provides a permissive environment for neural crest cell migration. Here we demonstrate localized down-regulation of the expression of the FGF responsive gene, Sprouty1 in the epithelium covering the presumptive second branchial arch of hypomorphic Fgfr1 mutants. This appears to result in a failure to establish an ectodermal signalling center expressing Fgf3 and Fgf15. We also studied differentiation of the ectoderm in the second branchial arch region. Development of the geniculate placode as well as the VIIth cranial ganglion is affected in Fgfr1 hypomorphs. Our results suggest that Fgfr1 is important for localized signalling in the pharyngeal ectoderm and consequently for normal tissue interactions in the developing second branchial arch.  相似文献   

14.
《The Journal of cell biology》1993,122(5):1053-1065
We examined the expression of the neurotrophins (NTFs) and their receptor mRNAs in the rat trigeminal ganglion and the first branchial arch before and at the time of maxillary nerve growth. The maxillary nerve appears first at embryonic day (E)10 and reaches the epithelium of the first branchial arch at E12, as revealed by anti-L1 immunohistochemistry. In situ hybridization demonstrates, that at E10- E11, neurotrophin-3 (NT-3) mRNA is expressed mainly in the mesenchyme, but neurotrophin-4 (NT-4) mRNA in the epithelium of the first branchial arch. NGF and brain-derived neurotrophic factor (BDNF) mRNAs start to be expressed in the distal part of the first brachial arch shortly before its innervation by the maxillary nerve. Trigeminal ganglia strongly express the mRNA of trkA at E10 and thereafter. The expression of mRNAs for low-affinity neurotrophin receptor (LANR), trkB, and trkC in trigeminal ganglia is weak at E10, but increases by E11-E12. NT-3, NT-4, and more prominently BDNF, induce neurite outgrowth from explant cultures of the E10 trigeminal ganglia but no neurites are induced by NGF, despite the expression of trkA. By E12, the neuritogenic potency of NGF also appears. The expression of NT-3 and NT-4 and their receptors in the trigeminal system prior to target field innervation suggests that these NTFs have also other functions than being the target-derived trophic factors.  相似文献   

15.
16.
Dlx5 and Dlx6, two members of the Distalless gene family, are required for development of numerous tissues during embryogenesis, including facial and limb development. This gene pair is expressed in tandem, transcribed toward each other and separated by a short intergenic region containing multiple putative enhancers. Targeted inactivation of Dlx5 and Dlx6 in mice results in multiple developmental defects in craniofacial and limb structures, suggesting that these genes are crucial for aspects of both neural crest and nonneural crest development. To further investigate potential developmental roles of Dlx5 and Dlx6, we used one of the Dlx5/6 intergenic enhancers to drive Cre recombinase expression in transgenic mice. Crossing Dlx5/6-Cre transgenic mice with mice from the R26R strain results in beta-galactosidase staining in the apical ectodermal ridge, brain, and neural crest-derived mesenchyme of the pharyngeal arches, with staining in term embryos observed in the facial skeleton and specific brain structures. However, in contrast to endogenous expression patterns of Dlx5 and Dlx6, Cre expression within the pharyngeal arches occurs during a very narrow window in early development. Our studies suggest that Dlx5/6-Cre mice may prove useful both in further understanding the function and regulation of Distalless genes during development and in studies of gene function in conditional knockout mice.  相似文献   

17.
18.
Hox genes are known key regulators of embryonic segmental identity, but little is known about the mechanisms of their action. To address this issue, we have analyzed how Hoxa2 specifies segmental identity in the second branchial arch. Using a subtraction approach, we found that Ptx1 was upregulated in the second arch mesenchyme of Hoxa2 mutants. This upregulation has functional significance because, in Hoxa2(-/-);Ptx1(-/-) embryos, the Hoxa2(-/-) phenotype is partially reversed. Hoxa2 interferes with the Ptx1 activating process, which is dependent on Fgf signals from the epithelium. Consistently, Lhx6, another target of Fgf8 signaling, is also upregulated in the Hoxa2(-/-) second arch mesenchyme. Our findings have important implications for the understanding of developmental processes in the branchial area and suggest a novel mechanism for mesenchymal patterning by Hox genes that acts to define the competence of mesenchymal cells to respond to skeletogenic signals.  相似文献   

19.
Hox 7.1 is a murine homeobox-containing gene expressed in a range of neural-crest-derived tissues and areas of putative epithelial-mesenchymal interactions during embryogenesis. We have examined the expression of Hox 7.1 during craniofacial development in the mouse embryo between days 8 and 16 of development. Whereas facial expression at day 10 of gestation is broadly localised in the neural-crest-derived mesenchyme of the medial nasal, lateral nasal, maxillary and mandibular processes, by day 12 expression is restricted to the mesenchyme immediately surrounding the developing tooth germs in the maxillary and mandibular processes. Hox 7.1 expression in the mesenchyme of the dental papilla and follicle is maximal at the cap stage of development and progressively declines in the bell stage prior to differentiation of odontoblasts and ameloblasts. Hox 7.1 expression in tooth germs is independent of overall embryonic stage of development but is dependent on stage of development of the individual tooth. Similar patterns of transient Hox 7.1 expression can also be detected in tooth germs in vitro in organ cultures of day 11 first branchial arch explants cultured for up to 7 days. Hox 7.1 is also expressed early in development (days 10/11) in the epithelium of the developing anterior pituitary (Rathke's pouch), the connective tissue capsule and meninges of the developing brain, and specific regions of neuroepithelium in the developing brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号