首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular distribution and intracellular localization of neuron-specific enolase (NSE) has been studied by electron microscopic immunocytochemistry in the brain of the rat and of the mouse. Although the intensity of staining was less in the mouse, the same structures were positive in both species. In the cerebrum, the neuronal perikarya and dendrites were intensely stained, but staining was almost entirely absent in the presynaptic terminals. The deep neurons of the brain stem were also positive. In the cerebellum, perikarya, axons, and parallel fibers of the granule cell neurons were stained as were the synaptic vesicles and presynaptic membranes of the synapses between the parallel fibers and the Purkinje cell dendrites. Golgi cell dendrites, basket cells and their axons, and mossy fibers were also positive. In contrast, the Purkinje cells including their dendrites, and the climbing fibers that formed synapses with the Purkinje cell dendrites were not stained. The majority of the myelinated axons in both the cerebrum and the cerebellum did not stain, but the fibrillary astrocytic processes between myelinated axons in the white matter did. Oligodendroglia, protoplasmic astrocytes, Bergmann glia, astrocytes investing capillaries, and vascular endothelial cells were negative for reaction product. In the positively staining cells and their processes, the positivity was dispersed throughout the cytoplasm and corresponded most closely to the distribution of ribosomes, the granular endoplasmic reticulum, and microtubules. Nuclei, mitochondria, the cisternae of the Golgi complex, myelin lamellae, and most membranes were not stained.  相似文献   

2.
P Liesi 《Medical biology》1984,62(3):163-180
Laminin and fibronectin, the major noncollagenous matrix glycoproteins, were studied in connection with normal brain cells and neuroectodermal cell lines. Laminin, a Mr 900,000 dalton matrix glycoprotein and an essential component of basement membranes, was found to be produced by cultured cells of several malignant cell lines of neuroectodermal origin. In cultured mouse C1300 neuroblastoma line cells laminin was localized, by immunoelectron microscopy, to the rough endoplasmic reticulum and, to sites of cell-to-cell and cell-to-substratum adhesion. Further experiments on the intracellular transport of this glycoprotein in C1300 cells confirmed that laminin is, at least partially, transported through the Golgi pathway. These results favor a role for laminin in attachment and cellular interactions of malignant neuronal cells. Laminin was also found in connection with neurons and glial cells from mammalian brain. In primary cultures from developing rat brain the vast majority of non-neuronal cells (80%) expressed immunoreactivity for the glial fibrillary acidic protein, a cytoskeletal protein specific for astrocytes. During the first week in culture all the glial fibrillary acidic protein-positive cells, with the exception of mature-looking star-shaped astrocytes, exhibited immunoreactivity for laminin. The intracellular laminin disappeared gradually after a few weeks in culture, but an extensive laminin matrix persisted and seemed to be localized on the upper surface of the non-neuronal cells. The neurofilament-positive neurons were negative for laminin. Pretreatment of the cultures with the ionophore monensin, caused accumulation of laminin-immunoreactivity within the Golgi region, which confirmed that laminin is, indeed, produced by cultured astrocytes and secreted through the Golgi complex. No fibronectin immunoreactivity was found in the majority of glial cells. However, under culture conditions where fibronectin was omitted from the culture medium there was, in the primary cultures, a minor population of glial fibrillary acidic protein-positive flat glial cells that exhibited intracytoplasmic immunofluorescence for fibronectin. In the presence of fibronectin in culture medium no fibronectin-positive glial cells could be detected. It thus appears that laminin, and to a minor extent fibronectin, are proteins that normal glial cells are capable of producing under specific conditions. Laminin and fibronectin were localized in adult rat brain in capillary and meningeal structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Immunocytochemical localization of Na+ channel subtypes RI and RII showed that RI immunoreactivity is relatively low and homogeneous along the rostral-caudal extent of sagittal brain sections, whereas RII staining is heterogeneous and relatively dense in the forebrain, substantia nigra, hippocampus, and cerebellum. The somata of the dentate granule cells, hippocampal pyramidal cells, cerebellar Purkinje cells, and spinal motor neurons are immunoreactive for RI but not RII. In contrast, areas rich in unmyelinated nerve fibers, such as the mossy fibers of the dentate granule cells, the stratum radiatum and stratum oriens of the hippocampus, and the molecular layer of the cerebellum, are strongly immunoreactive for RII but not RI. Differential regulation of expression of RI and RII genes may allow differential modulation of Na+ channel density in somata and axons. The sites of RI localization correlate closely with sites where sustained Na+ currents have been recorded.  相似文献   

4.
In the human lymphoblastic cell line KE 37, Northern blot analysis with cDNA probes for human regulatory subunits RIIα and RIIβ of the cAMP-dependent protein kinase (A-kinase) type II and immunoblotting or immunoprecipitation studies with several antibodies directed against RIIα and RIIβ show that these two isoforms are expressed. The major isoform α is mostly cytosolic, whereas the β isoform appears concentrated in the Golgi-centrosomal area, as judged by immunofluorescence and cell fractionation. Using a 32P-labeled RII overlay on Western blots, a 350-kDa RII-binding protein (AKAP 350) was specifically identified in centrosomes isolated from this cell line, whereas a Golgi fraction has previously been demonstrated to contain an 85-kDa RII-binding protein (AKAP 85). AKAP 350 is highly insoluble and can partially be extracted from centrosomes as a complex of AKAP 350 and RII subunit. AKAP 350 was identified as a specific centrosomal protein previously demonstrated in the pericentriolar material. The potential significance of a specific subcellular distribution for different RII-binding proteins in nonneuronal cells is discussed.  相似文献   

5.
Eukaryotic cilia are assembled via intraflagellar transport (IFT) in which large protein particles are motored along ciliary microtubules. The IFT particles are composed of at least 17 polypeptides that are thought to contain binding sites for various cargos that need to be transported from their site of synthesis in the cell body to the site of assembly in the cilium. We show here that the IFT20 subunit of the particle is localized to the Golgi complex in addition to the basal body and cilia where all previous IFT particle proteins had been found. In living cells, fluorescently tagged IFT20 is highly dynamic and moves between the Golgi complex and the cilium as well as along ciliary microtubules. Strong knock down of IFT20 in mammalian cells blocks ciliary assembly but does not affect Golgi structure. Moderate knockdown does not block cilia assembly but reduces the amount of polycystin-2 that is localized to the cilia. This work suggests that IFT20 functions in the delivery of ciliary membrane proteins from the Golgi complex to the cilium.  相似文献   

6.
Both neurons and glia in mammalian brains are highly ramified. Neurons form complex neural networks using axons and dendrites. Axons are long with few branches and form pre-synaptic boutons that connect to target neurons and effector tissues. Dendrites are shorter, highly branched, and form post-synaptic boutons. Astrocyte processes contact synapses and blood vessels in order to regulate neuronal activity and blood flow, respectively. Oligodendrocyte processes extend toward axons to make myelin sheaths. Microglia processes dynamically survey their environments. Here, we describe the local secretory system (ER and Golgi) in neuronal and glial processes. We focus on Golgi outpost functions in acentrosomal microtubule nucleation, cargo trafficking, and protein glycosylation. Thus, satellite ER and Golgi are critical for local structure and function in neurons and glia.  相似文献   

7.
Summary 1. The morphology of neurons in the dentate gyrus of the adult human brain was analyzed with two variants of Golgi technique.2. About 20 neuronal types and subtypes were observed in the dentate gyrus of the adult human, several of which had not previously been described in the human. The human dentate gyrus harbors 4 types of neurons in the molecular layer, 3 types within the granule cell layer, and at least 10 types in the hilus.3. Compared to the granule neurons in the rat brain, human granule neurons show a much greater variability. Many of these human neurons have basal dendrites and/or axonal spines. Also, there are significant differences among these neurons regarding the density of their dendritic trees and dendritic spines. In contrast to the rat, human hilar neurons with complex spines have complex spines not only on their dendrites but also on their cell bodies.4. This study opens the door for further morphological studies involving specific diseases such as Alzheimer's disease and epilepsy.  相似文献   

8.
Microtubules in typical cells form radial arrays with their plus-ends pointing toward the cell periphery. In contrast, microtubules in dendrites of neurons are free from centrosomes and have a unique arrangement in which about half have a polarity with a minus-end distal orientation. Mechanisms for generation and maintenance of the microtubule arrangement in dendrites are not well understood. Here, we examined dendritic localization of a centrosomal protein, ninein, which has microtubule-anchoring and stabilizing functions. Immunohistochemical analysis of developing mouse cerebral and cerebellar cortices showed that ninein is localized at the centrosome in undifferentiated neural precursors. In contrast, ninein was barely detected in migrating neurons, such as those in the intermediate layer of the cerebral cortex and the internal granular layer of the cerebellar cortex. High expression was observed in thick dendrite-bearing neurons such as pyramidal neurons of the cerebral cortex and Purkinje neurons in the cerebellar cortex. Ninein was not detected at the centrosome of these cells, but was diffusely present in cell soma and dendrites. In cultured cortical neurons, ninein formed granular structures in soma and dendrites, being not associated with γ-tubulin. About 60% of these structures showed resistance to detergent and association with microtubules. Our observations suggest that the minus-ends of microtubules may be anchored and stabilized by centrosomal proteins localized in dendrites.  相似文献   

9.
In mammalian brain, physiological signals carried by cyclic AMP (cAMP) seem to be targeted to effector sites via the tethering of cAMP-dependent protein kinase II beta (PKAII beta) to intracellular structures. Recently characterized A kinase anchor proteins (AKAPs) are probable mediators of the sequestration of PKAII beta because they contain a high-affinity binding site for the regulatory subunit (RII beta) of the kinase and a distinct intracellular targeting domain. To establish a cellular basis for this targeting mechanism, we have employed immunocytochemistry to 1) identify the types of neurons that are enriched in AKAPs, 2) determine the primary intracellular location of the anchor protein, and 3) demonstrate that an AKAP and RII beta are coenriched and colocalized in neurons that utilize the adenylate cyclase-cyclic AMP-dependent protein kinase (PKA) signaling pathway. Antibodies directed against rat brain AKAP 150 were used to elucidate the regional, cellular and intracellular distribution of a prototypic anchor protein in the CNS. AKAP 150 is abundant in Purkinje cells and in neurons of the olfactory bulb, basal ganglia, cerebral cortex, and other forebrain regions. In contrast, little AKAP 150 is detected in neurons of the thalamus, hypothalamus, midbrain, and hindbrain. A high proportion of total AKAP 150 is concentrated in primary branches of dendrites, where it is associated with microtubules. We also discovered that the patterns of accumulation and localization of RII beta (and PKAII beta) in brain are similar to those of AKAP 150. The results suggest that bifunctional AKAP 150 tethers PKAII beta to the dendritic cytoskeleton, thereby creating a discrete target site for the reception and propagation of signals carried by cAMP.  相似文献   

10.
BACKGROUND: A wide variety of proteins are transported across epithelial cells by vesicular carriers. This process, transcytosis, is used to generate cell surface polarity and to transport macromolecules between the luminal and serosal sides of the epithelial layer. The polymeric immunoglobulin receptor is a well-characterized transcytotic molecule in epithelia. It binds to its ligand, polymeric immunoglobulin, at the basolateral surface, and the receptor-ligand complex is transcytosed to the apical surface, where the ligand is released. Our previous studies have shown that hippocampal neurons may employ mechanisms similar to those of epithelial cells to sort proteins to two plasma membrane domains. The machinery used for axonal delivery recognizes proteins that are targeted apically in epithelia, whereas basolaterally destined proteins are delivered to the dendrites. It has not been clear, however, whether transcytosis occurs in neurons. RESULTS: We report expression of the polymeric immunoglobulin receptor in cultured hippocampal neurons, using a Semliki Forest Virus expression system, and show by immunofluorescence microscopy that the newly synthesized receptor is targeted from the Golgi complex predominantly to the dendrites - only about 20% of the infected neurons display axonal immunofluorescence. Addition of ligand leads to significant redistribution of the receptor to the axons, shown by an approximately three-fold increase in axonal immunoreactivity with the anti-receptor antibodies. CONCLUSIONS: Our results suggest that a transcytotic route, analogous to that in epithelia, exists in neurons, where it transports proteins from the somatodendritic to the axonal domain. Cultured neurons expressing the polymeric immunoglobulin receptor offer an experimental system that should be useful for further characterization of this novel neuronal pathway at the molecular and functional level.  相似文献   

11.
With the aid of a sheep antiserum against rat brain glutamate decarboxylase (GAD), the endogenous marker for GABAergic neurons, we have labeled immunocytochemically various types of nerve cells in the main olfactory bulb of rats, with and without topic injections of colchicine. The peroxidase-antiperoxidase procedure was applied to floating Vibratome and frozen sections. A large part of the periglomerular cell population and practically all granule cells in the deep layers contain GAD-like immunoreactivity in untreated rats, while tufted and mitral cells (the projection neurons) are unstained. This observation confirms a previous study with a rabbit antiserum against mouse brain GAD, which suggested that GABAergic neurons with presynaptic dendrites contain high somatal concentrations of GAD. We show, however, that immunostaining of granule cell bodies decreases progressively from the internal plexiform layer to the deep portion of the granule cell layer. Many cell processes in the glomeruli are densely stained. They presumably represent synaptic gemmules of the numerous GAD-positive periglomerular cells, which thus could provide initial, inhibitory modulation of the afferent input. In the external plexiform layer immunostaining of the neuropil is substantially denser in the superficial half than in the deep half. This may reflect a corresponding gradient of inhibition related to unequal frequency of occurrence of synaptic gemmules of granule cell dendrites. Alternatively such a graded immunostaining of cell processes could be related to the corresponding gradient in the density of immunostaining of granule cell bodies in the deep layers, in accordance with recent data indicating that superficial and deep granule cells project their ascending dendrites respectively to superficial and deep portions of the external plexiform layer. Furthermore, we have demonstrated the presence of additional classes of GAD-positive neurons, microneurons in the external plexiform layer, small neurons in the periglomerular region, the external plexiform layer, the mitral cell layer, the internal plexiform layer, and medium-size neurons in the granule layer and the white matter. The small- and medium-size GAD-positive neurons appear weakly immunoreactive in untreated rats, but become densely stained after topic colchicine injection. Such cells presumably lack presynaptic dendrites and may correspond to different types of short axon cells demonstrated by the Golgi method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Abstract: The expression of high-molecular-weight (HMW) microtubule-associated protein-2 (MAP-2) expressing exon 8 (MAP-2+8) was examined by immunoblotting during rat brain development and in sections of human CNS. In rat brain, HMW MAP-2+8 expression was detected at embryonic day 21 and increased during postnatal development. In adult rats, HMW MAP-2+8 comigrated with MAP-2a. In human adult brain, HMW MAP-2+8 was expressed in select neuronal populations, including pyramidal neurons of layers III and V of the neocortex and parahippocampal cortex, pyramidal neurons in the endplate, CA2 and subiculum of the hippocampus, and the medium-sized neurons of the basal ganglia. In the cerebellum, a subpopulation of Golgi neurons in the internal granular cell layer and most Purkinje cells were also stained. In the spinal cord staining was observed in large neurons of the anterior horn. Staining was present in cell bodies and dendrites but not in axons. At the ultra-structural level, HMW MAP-2+8 immunoreactivity was observed on mitochondrial membranes and in postsynaptic densities (PSDs) of some asymmetric synapses in the midfrontal cortex and spinal cord. Immunoblots of proteins isolated from enriched mitochondrial and PSD fractions from adult human frontal lobe and rat brains confirmed the presence of HMW MAP-2+8. The presence of HMW MAP-2+8 in dendrites and in close proximity to PSDs supports a role in structural and functional attributes of select excitatory CNS synapses.  相似文献   

13.
Summary Fine structural localization of an ACTH-like substance was obtained in neurons of the rat arcuate nucleus using immuno-electron microscopy, whereas it could not be confirmed that ACTH-containing cell bodies are present in the supraoptic nucleus. The immunoreactive cells of the arcuate nucleus appeared to be more numerous than the unreactive neurons. Immunostaining was carried out before embedding in resin. Empty vesicles of irregular shape were found in dendrites of immunoreactive arcuate neurons, but their significance and nature remain enigmatic. The reaction product was distributed uniformly throughout the cytoplasm of the ACTH-positive cells, except that the mitochondria, rough endoplasmic reticulum and Golgi vesicles and cisternae were devoid of PAP molecules. This distribution differed from the localization reported in ACTH-secreting cells of the rat anterior pituitary, where the reaction product was found in the rough endoplasmic reticulum and Golgi complex as well as in secretory granules.  相似文献   

14.
Human natural killer antigen-1 (HNK-1) is a carbohydrate epitope associated with sulfoglucuronylglycolipids and glycoproteins. Biochemical analyses have demonstrated associations between the HNK-1 epitope and isoforms of the neural cell adhesion molecule (N-CAM) family. In the cerebellum, HNK-1 is prominently expressed in Purkinje cell dendrites and Golgi cells. Purkinje cell expression of HNK-1 reveals an array of parasagittal stripes and transverse zones. Interestingly, the parasagittal expression pattern of HNK-1 is different from those reported with several other markers such as zebrin II/aldolase C and the small heat shock protein HSP25. N-CAM null knockout mice were used to explore the possible role of the HNK-1/N-CAM interaction during the topographical organization of the cerebellar cortex. N-CAM null mice have no N-CAM immunoreactivity but otherwise the cerebellum appears morphologically normal. Further, in the N-CAM null HNK-1 immunoreactivity is abolished from Purkinje cell dendrites but is retained on Golgi cells and neurons of the cerebellar nuclei. Despite the absence of N-CAM/HNK-1, parasagittal stripes and transverse zones in the cerebellum as revealed by using zebrin II immunocytochemistry appear normal.  相似文献   

15.
Immunohistochemical staining with monoclonal antibodies showed that microtubule-associated protein 1 (MAP1) has a restricted cellular distribution in the rat cerebellum. Anti-MAP1 staining was found only in neurons, where it was much stronger in dendrites than in axons. There were striking variations in the apparent concentration of MAP1 in different classes of neurons. Purkinje cells were the most strongly labeled, while granule cell neurons gave a faint, threshold-level reaction with the antibody. The reaction of Golgi neurons was intermediate between these two extremes. Equivalent results were obtained using two different methods of tissue preparation. Thus MAP1 appears to be a neuron-specific protein that is highly concentrated in dendrites and occurs at markedly different levels in different types of neurons. These observations provide further indications of heterogeneity among brain microtubules.  相似文献   

16.
Summary Light- and electron-microscopic enzyme cytochemistry was used to localize acetylcholinesterase (AChE) activity in the synganglion (brain) of the tick Dermacentor variabilis. High AChE activity was observed throughout the neuropil as well as adjacent to most neuronal perikarya. Intracellular activity was not observed by light microscopy. By electron microscopy, reaction product was localized at the plasma membrane of glia and neurons. Enzyme activity was not associated with the olfactory globuli neurons. In other types of neurons, small amounts of reaction product were observed in the Golgi apparatus and nuclear envelope. Large neurosecretory neurons contained activity that appeared to be associated with deep invaginations of the plasma membrane as well as intracellular membranes. AChE activity was also associated with processes of both neurons and glia. In most peripheral nerves AChE activity was associated with virtually all axons. Clearly then, AChE is associated with glia and non-cholinergic neurons as well as with presumed cholinergic neurons. The widespread localization and large amounts of AChE in the tick brain exceeds that reported for other invertebrates and vertebrates. As has been suggested for other animals, AChE in the tick brain may have functions in addition to its known role in cholinergic neurotransmission.  相似文献   

17.
The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7(Fbxw8) localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7(Fbxw8) by independent approaches including Fbxw8 knockdown reveals that Cul7(Fbxw8) is selectively required for the growth and elaboration of dendrites but not axons in primary neurons and in the developing rat cerebellum in vivo. Inhibition of Cul7(Fbxw8) also dramatically impairs the morphology of the Golgi complex, leading to deficient secretory trafficking in neurons. Using an immunoprecipitation/mass spectrometry screening approach, we also uncover the cytoskeletal adaptor protein OBSL1 as a critical regulator of Cul7(Fbxw8) in Golgi morphogenesis and dendrite elaboration. OBSL1 forms a physical complex with the scaffold protein Cul7 and thereby localizes Cul7 at the Golgi apparatus. Accordingly, OBSL1 is required for the morphogenesis of the Golgi apparatus and the elaboration of dendrites. Finally, we identify the Golgi protein Grasp65 as a novel and physiologically relevant substrate of Cul7(Fbxw8) in the control of Golgi and dendrite morphogenesis in neurons. Collectively, these findings define a novel OBSL1-regulated Cul7(Fbxw8) ubiquitin signaling mechanism that orchestrates the morphogenesis of the Golgi apparatus and patterning of dendrites, with fundamental implications for our understanding of brain development.  相似文献   

18.
The nervous system is composed of cells including neurons and glia. It has been believed that the former cells play central roles in various neural functions while the latter ones have only supportive functions for neurons. However, recent findings suggest that glial cells actively participate in neural activities, and the cooperation between neurons and glia is important for nervous system functions. In Caenorhabditis elegans, amphid sensory organs in the head also consist of sensory neurons and glia-like support cells (amphid socket and amphid sheath cells). Ciliary endings of some sensory neurons exposed to the environment detect various chemicals, molecules and signals, and the cilia of some neurons can also take up fluorescent dyes such as DiI. Here, we show that the amphid sheath glia are also stained with DiI and that its uptake by the amphid sheath cells correlates with DiI-filling of sensory neurons, suggesting that the amphid sheath glia might interact with sensory neurons. Furthermore, the localization of the amphid sheath cell reporter F52E1.2SP::YFP is abnormal in che-2 mutants, which have defective cilia. These findings imply that sensory neurons might affect amphid sheath glia functions in the amphid sensory organ of C. elegans.  相似文献   

19.
Endozepines are a family of peptides capable of displacing benzodiazepines from their specific binding sites, to which belong the diazepam-binding inhibitor and the octadecaneuropeptide (ODN). This paper reports the distribution of ODN-related peptides, investigated for the first time by immunocytochemistry, in different brain and pituitary regions of the Atlantic hagfish, Myxine glutinosa. Immunoreactive ODN-like material was found in the telencephalon at the level of bundles of different olfactory nerve fibres. Moreover, at the level of the pallium, immunoreactive multipolar neurons were observed in the pars parvocellularis of the stratum griseum superficialis. Similar immunopositive nerve cell bodies were found in the nucleus medialis of the central prosencephalic complex. In the mesencephalon, few immunoreactive neurons lining and contacting the mesencephalic ventricle were detected; such nerve cells could be involved in the regulation of cerebrospinal fluid homeostasis. Dorsally in the mesencephalon, numerous ODN-containing cell bodies were present in the area praetectalis. The rhomboencephalon was immunostained only in the octavolateral area and in the nucleus motorius magnocellularis of the trigeminal nerve. Furthermore, ODN immunoreactivity was also present in the nerve cells of ganglia of the ophthalmic division of the trigeminal nerve complex. The immunocytochemical patterns described here in the brain of M. glutinosa suggest an involvement of ODN-like peptides as neuromodulators in sensory pathways, such as olfactory and visual. Finally, ODN-like substances were localized in discrete populations of adenohypophysial cells and in tanycytes lining the neurohypophyseal walls, suggesting for endozepines a paracrine and/or endocrine control of pituitary hormones release and a neurohormone role respectively. These results could give new insights into the chemioarchitecture of the brain of myxinoids.  相似文献   

20.
The expression patterns of adenosine A(1) receptors (A(1)Rs), adenosine deaminase (ADA) and ADA binding protein (CD26) were studied in goldfish brain using mammalian monoclonal antibody against A(1)R and polyclonal antibodies against ADA and CD26. Western blot analysis revealed the presence of a band of 35 kDa for A(1)R in membrane preparations and a band of 43 kDa for ADA in both cytosol and membranes. Immunohistochemistry on goldfish brain slices showed that A(1) receptors were present in several neuronal cell bodies diffused in the telencephalon, cerebellum, optic tectum. In the rhombencephalon, large and medium sized neurons of the raphe nucleus showed a strong immunopositivity. A(1)R immunoreactivity was also present in the glial cells of the rhombencephalon and optic tectum. An analogous distribution was observed for ADA immunoreactivity. Tests for the presence of CD26 gave positive labelling in several populations of neurons in the rhombencephalon as well as in the radial glia of optic tectum, where immunostaining for ADA and A(1)R was observed. In goldfish astrocyte cultures the immunohistochemical staining of A(1)R, ADA and CD26, performed on the same cell population, displayed a complete overlapping distribution of the three antibodies. The parallel immunopositivity, at least in some discrete neuronal areas, for A(1)Rs, ADA and CD26 led us to hypothesize that a co-localization among A(1)R, ecto-ADA and CD26 also exists in the neurons of goldfish since it has been established to exist in the neurons of mammals. Moreover, we have demonstrated for the first time, that A(1)R, ecto-ADA and CD26 co-localization is present on the astroglial component of the goldfish brain. This raises the possibility that a similar situation is also shown in the glia of the mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号