首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background  

The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS) whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g·L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production.  相似文献   

2.
Fish viscera are an important source for biomolecules such as protein and lipids. Studies were carried out to assess fermentation ensilaging as a method for recovery of oil from fresh water fish viscera. The total lipid content in the viscera ranged from 19% to 21% and upto 85% of this could be recovered by fermentation. Fermentation using added lactic cultures (Enterococcus faecium HAB01 and Pediococcus acidilactici K7) did not show any advantage over natural fermentation with respect to recovery of oil and no differences were observed in fatty acid composition of oil recovered by fermentation using different cultures. Activity of acidic, neutral and alkaline proteases decreased during fermentation. Eventhough degree of protein hydrolysis increased during fermentation with highest (62.3%) being in fermentation using Pediococcus acidilactici K7 no differences were found in oil recovery. With decrease in protease activity the rate of change in degree of hydrolysis also decreased.  相似文献   

3.
Fermentation of waste fish treated with Aspergillus oryzae, Aspergillus sojae K, and Saccharomyces cerevisiae IFO 2114 were studied independently and combined. Three microorganisms decreased the POV, MDA, and COY of fish meal at different rates. The optimum conditions for fermentation with the combination of three microorganisms was found at 30°C for 20–hr fermentation. Almost no difference was observed in the chemical composition or amino acid spectra of the protein hydrolysates of the fermented and nonfermented fish meal. On the quantity of water-soluble amino acids, the highest increase was in glutamate among others, but histidine was decreased by the combination of the three microorganisms. With A. oryzae, the highest increase was in phenylalanine and with A. sojae K in threonine. A great change was observed in some fatty acids content. Myristic acid (14:0) was decreased while the highest increase occurred in the linoleic acid (18: 2) content by fermentation with the combination of three microorganisms. The same phenomenum was observed with A. oryzae and A. sojae K. S. cerevisiae has a weaker effect than A. oryzae and A. sojae K in fermentation of waste fish.  相似文献   

4.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under micro-aerobic conditions was investigated in this study. The experimental results of batch fermentation showed that the final concentration and yield of 1,3-PD on glycerol under micro-aerobic conditions approached values achieved under anaerobic conditions. However, less ethanol was produced under microaerobic than anaerobic conditions at the end of fermentation. The batch micro-aerobic fermentation time was markedly shorter than that of anaerobic fermentation. This led to an increment of productivity of 1,3-PD. For instance, the concentration, molar yield, and productivity of 1,3-PD of batch micro-aerobic fermentation by K. pneumoniae DSM 2026 were 17.65 g/l, 56.13%, and 2.94 g l–1 h–1, respectively, with a fermentation time of 6 h and an initial glycerol concentration of 40 g/l. Compared with DSM 2026, the microbial growth of K. pneumoniae AS 1.1736 was slow and the concentration of 1,3-PD was low under the same conditions. Furthermore, the microbial growth in fed-batch fermentation by K. pneumoniae DSM 2026 was faster under micro-aerobic than anaerobic conditions. The concentration, molar yield, and productivity of 1,3-PD in fed-batch fermentation under micro-aerobic conditions were 59.50 g/l, 51.75%, and 1.57 g l–1 h–1, respectively. The volumetric productivity of 1,3-PD under microaerobic conditions was almost twice that of anaerobic fed-batch fermentation, at 1.57 and 0.80 g l–1 h–1, respectively.  相似文献   

5.
γ-Aminobutyric acid (GABA), a hypotensive agent, and monacolin K, a cholesterol-lowering drug, can be produced by Monascus spp. Under optimal culture conditions, the products of fermentation using Monascus spp. may serve as a multi-functional dietary supplement and can prevent heart disease. In this study, Monascus purpureus CCRC 31615, the strain with the highest amount of monacolin K, was identified from 16 strains using solid fermentation. Its GABA productivity was particularly high. Addition of sodium nitrate during solid-state fermentation of M. purpureus CCRC 31615 improved the productivity of monacolin K and GABA to 378 mg/kg and 1,267.6 mg/kg, respectively. GABA productivity increased further to 1,493.6 mg/kg when dipotassium hydrophosphate was added to the medium. Electronic Publication  相似文献   

6.
Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1–2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5–4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.  相似文献   

7.
The composition of spirits distilled from fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tubers was compared by means of gas chromatography. The microorganisms used in the fermentation processes were the bacterium Zymomonas mobilis, strains 3881 and 3883, the distillery yeast Saccharomyces cerevisiae, strains Bc16a and D2 and the Kluyveromyces fragilis yeast with an active inulinase. The fermentation of mashed tubers was conducted using a single culture of the distillery yeast Saccharomyces cerevisiae and the bacterium Zymomonas mobilis (after acid or enzymatic hydrolysis) as well as Kluyveromyces fragilis (sterilized mashed tubers). The tubers were simultaneously fermented by mixed cultures of the bacterium or the distillery yeast with K. fragilis. The highest ethanol yield was achieved when Z. mobilis 3881 with a yeast demonstrating inulinase activity was applied. The yield reached 94 % of the theoretical value. It was found that the distillates resulting from the fermentation of mixed cultures were characterized by a relatively lower amount of by‐products compared to the distillates resulting from the single species process. Ester production of 0.30–2.93 g/L, responsible for the aromatic quality of the spirits, was noticed when K. fragilis was applied for ethanol fermentation both in a single culture process and also in the mixed fermentation with the bacterium. Yeast applied in this study caused the formation of higher alcohols to concentrations of 7.04 g/L much greater than those obtained with the bacterium. The concentrations of compounds other than ethanol obtained from Jerusalem artichoke mashed tubers, which were fermented by Z. mobilis, were lower than those achieved for yeasts.  相似文献   

8.
Aims: To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. Methods and Results: The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38°C for growth and inulinase production, and 35°C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l?1, and the highest ethanol yield of 0·467, or 91·5% of the theoretical value of 0·511, was achieved for the slurry with a solid concentration of 200 g l?1. Conclusions: Halophilic Jerusalem artichoke can be used for fuel ethanol production. Significance and Impact of the Study: Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.  相似文献   

9.
Lumping kinetics models were built for the biological treatment of acetone–butanol–ethanol (ABE) fermentation wastewater by oleaginous yeast Trichosporon cutaneum with different fermentation temperatures. Compared with high temperature (33°C, 306?K) and low temperature (23°C, 296?K), medium temperature (28°C, 301?K) was beneficial for the cell growth and chemical oxygen demand (COD) degradation during the early stage of fermentation but the final yeast biomass and COD removal were influenced little. By lumping method, the materials in the bioconversion network were divided into five lumps (COD, lipid, polysaccharide, other intracellular products, other extracellular products), and the nine rate constants (k1k9) for the models can well explain the bioconversion laws. The Gibbs free energy (G) for this bioconversion was positive, showing that it cannot happen spontaneous, but the existence of yeast can after the chemical equilibrium and make the bioconversion to be possible. Overall, the possibility of using lumping kinetics for elucidating the laws of materials conversion in the biological treatment of ABE fermentation wastewater by T. cutaneum has been initially proved and this method has great potential for further application.  相似文献   

10.
Summary A study was conducted of the growth of Saccharomyces (S.) and non-Saccharomyces populations during alcoholic fermentation of Emir and Kalecik karasi grape varieties in the 1998 and 1999 vintages. Kloeckera (Kl.) apiculata, Kluyveromyces (K.) thermotolerans, S. cerevisiae and Candida (C.) pulcherrima were the dominant yeasts in fermentation of the 1998 vintage in Emir must. Kl. apiculata and K. thermotolerans proliferated at the beginning of the fermentation. The number of these yeasts eventually decreased when S. cerevisiae appeared as the dominant yeast on day four. But they remained until the end of the fermentation. Kl. apiculata, C. dattilla, C. pulcherrima, C. krusei and S. cerevisiae were found during the fermentation of the 1999 vintage Emir must. The count of S. cerevisiae was very high in the juice, but after skin fermentation and cold treatment, it disappeared and could not be isolated until day six of the fermentation. Kl. apiculata and C. dattilla were the dominant yeasts until S. cerevisiae started proliferation after the middle of the fermentation. Kl. apiculata, Metschnikowia (M.) pulcherrima, S. cerevisiae, C. holmii, C. valida, C. guillermondii and Candida sp. were isolated during the fermentation of Kalecik karasi must in 1998. Kl. apiculata, C. pulcherrima, S. cerevisiae, C. holmii and C. valida were identified in fermentation of must in the 1999 vintage. An erratum to this article is available at .  相似文献   

11.
Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90% of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30°C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2% were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxie and galactose utilization problems must be considered.  相似文献   

12.
This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes.  相似文献   

13.
Several different yeast species have been developed into systems for efficient heterologous gene expression. In this paper we review foreign gene expression in the dairy yeastKluyveromyces lactis. This yeast presents several advantageous properties in comparison to other yeast species. These include its impressive secretory capacities, its excellent fermentation characteristics on large scale, its food grade status and the availability of both episomal and integrative expression vectors. Moreover, in contrast to the methylotrophic yeasts that are frequently used for the expression of foreign genes,K. lactis does not require explosion-proof fermentation equipment. Here, we present an overview of the available tools for heterologous gene expression inK. lactis (available promoters, vector systems, etc). Also, the production of prochymosin, human serum albumin and pancreatic phospholipase byK. lactis is discussed in more detail, and used to rate the achievements ofK. lactis with respect to other micro-organisms in which these proteins have been produced.  相似文献   

14.
Permeabilized cells of Kluyveromyces marxianus CCY eSY2 were tested as the source of lactase in the ethanol fermentation of concentrated deproteinized whey (65–70 g/l lactose) by Saccharomyces cerevisiae CCY 10–13–14. Rapid lactose hydrolysis by small amounts of permeabilized cells following the fermentation of released glucose and galactose by S. cerevisiae resulted in a twofold enhancement of the overall volumetric productivity (1.03 g/l × h), compared to the fermentation in which the lactose was directly fermented by K. marxianus.  相似文献   

15.
Kluyveromyces marxianus is thermotolerant yeast that is able to utilize a wider range of substrates and has greater thermal tolerance than most other yeast species. K. marxianus can assimilate xylose, but its ability to produce ethanol from xylose in oxygen-limited environments is poor. In the present study, the K. marxianus xylose reductase (KmXR) gene (Kmxyl1) was cloned and the recombinant enzyme was characterized to clarify the factors that limit xylose fermentation in K. marxianus NBRC1777. KmXR is a key enzyme in the xylose metabolism of K. marxianus, which was verified by disruption of the Kmxyl1 gene. The Km of the recombinant KmXR for NADPH is 65.67 μM and KmXR activity is 1.295 U/mg, which is lower than those of most reported yeast XRs, and the enzyme has no activity with coenzyme NADH. This result demonstrates that the XR from K. marxianus is highly coenzyme specific; combined with the extremely low XDH activity of K. marxianus with NADP+, the limitation of xylose fermentation is due to a redox imbalance under anaerobic conditions and low KmXR activity.  相似文献   

16.
Red yeast rice which is a product of solid fermentation was prepared from several kinds of Thai glutinous rice (Oryza sativa L.) cv. Korkor 6 (RD6), Kam (Kam), and Sanpatong1 (SPT1). Monascus purpureus CMU001 isolated from available Chinese red yeast rice was used as the fermentation starter. The analysis for the presence and the content of monacolins, the cholesterol-lowering compounds, were carried out using high performance liquid chromatography (HPLC). The presence of the monacolins was confirmed by the retention time of the reference compounds and LC-MS. The results were compared to those obtained from the Chinese red yeast rice and Thai non-glutinous rice (Osativa L. cv. Mali105). The chromatograms show the presence of monacolin K acid form (MKA), compactin (P1), monacolin M acid form (MMA), monacolin K (MK), monacolin M (MM), and dehydromonacolin K (DMK). A large peak of a compound with the molecular weight of 358 was also detected but could not be identified. The amount of two important monacolins, compactin, and monacolin K, were determined. It was found that the highest amount of compactin and monacolin K were 21.98 and 33.79 mg/g, respectively, when using Thai rice varity Osativa L. cv. RD6 which was fermented without adding soybean milk.  相似文献   

17.
Xylulokinase is one of the key enzymes in xylose metabolism and fermentation, and fine-tuned expression of xylulokinase can improve xylose fermentation in yeast. To improve the efficiency of xylose fermentation in Kluyveromyces marxianus, the gene KmXYL3, which encodes a d-xylulokinase (E.C. 2.7.1.17), was isolated from K. marxianus NBRC1777. KmXYL3 was expressed in Escherichia coli BL21 (DE3) cells, and the specific activity of the resulting recombinant purified xylulokinase was 23.5 mU/mg. Disruption of KmXYL3 resulted in both loss of xylitol utilization and marked decrease in xylose utilization, proving that KmXYL3 encodes a xylulokinase that catalyzes the reaction from xylulose to xylulose 5-phosphate in the xylose metabolic pathway. The slow assimilation of xylose observed in the KmXYL3-disrupted strain indicates that KmXYL3 is critical for xylose and xylitol utilization; however, K. marxianus utilizes a bypass pathway for xylose assimilation, and this pathway does not involve xylitol or xylulose.  相似文献   

18.
XCCNAU-92生产黄原胶的工业发酵培养基成份   总被引:1,自引:0,他引:1  
XCCNAU-92生产黄原胶的工业发酵培养基成份是:蔗糖、玉米淀粉、氮源X、鱼粉、CaCO3、MgSO4、K2HPO4。适宜的C/N是:蔗糖(玉米淀粉)/氮源X=60.0/1.0,蔗糖(玉米淀粉)/鱼粉=60.0/10.0。CaCO3、MgSO4对XCCNAU-92合成黄原胶有明显促进作用,K2HPO4在发酵过程中使pH保持稳定,Mn2+、Zn2+、Fe3+、柠檬酸和谷氨酸对生产黄原胶无促进作用。  相似文献   

19.
张博  张倩  郭瑞  吕淑霞 《微生物学通报》2023,50(5):2191-2203
二步发酵法是工业化生产维生素C (vitamin C, Vc)的主要方法,其中第二步由伴生菌与产酸菌(普通生酮基古龙酸菌)组合进行混菌发酵产生Vc前体2-酮基-l-古龙酸(2-keto-l-gluonic acid, 2-KLG)的机制,一直是科研人员研究的重要科学问题。通过高通量基因组学、转录组学、蛋白组学、代谢组学等组学技术揭示生物系统中各个组分相互作用关系已经成为主要的研究手段。本文对近年来利用组学技术解析Vc混菌发酵中两菌互作关系、解除发酵系统的氧化胁迫、伴生活性物质、产酸菌群体感应、外源添加物、基因工程改造产酸菌促进产2-KLG等方面的研究进行综述,并为进一步的探索和深入研究提供思路。  相似文献   

20.
Summary The production of -amylase by Bacillus licheniformis M27 in submerged fermentation was completely inhibited due to catabolic repression in medium containing 1% glucose. In contrast, the enzyme production in a solid state fermentation system was 19,550 units/ml extract even when the medium contained 15% glucose. The peak in enzyme titre was, however, shifted from 48 to 72 h. The ability of the solid state fermentation system to significantly overcome catabolic repression was not known earlier and is probably conferred by various physico-chemical factors and culture conditions specific to the system. Offprint requests to: B. K. Lonsane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号