首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
After completion of gastrulation, typical vertebrate embryos consist of three cell sheets, called germ layers. The outer layer, the ectoderm, which produces the cells of the epidermis and the nervous system; the inner layer, the endoderm, producing the lining of the digestive tube and its associated organs (pancreas, liver, lungs etc.) and the middle layer, the mesoderm, which gives rise to several organs (heart, kidney, gonads), connective tissues (bone, muscles, tendons, blood vessels), and blood cells. The formation of the germ layers is one of the earliest embryonic events to subdivide multicellular embryos into a few compartments. In Xenopus laevis, the spatial domains of three germ layers are largely separated along the animal-vegetal axis even before gastrulation; ectoderm in the animal pole region; mesoderm in the equatorial region and endoderm in the vegetal pole region. In this review, we summarise the recent advances in our understanding of the formation of the germ layers in Xenopus laevis.  相似文献   

3.
4.
5.
D Kimelman  M Kirschner 《Cell》1987,51(5):869-877
The primary patterning event in early vertebrate development is the formation of the mesoderm and its subsequent induction of the neural tube. Classic experiments suggest that the vegetal region signals the animal hemisphere to diverge from the pathway of forming ectoderm to form mesoderm such as muscle. Here we show that bovine basic FGF has a limited capacity to induce muscle actin expression in animal hemisphere cells. This level of expression can be raised to levels normally induced in the embryo by another mammalian growth factor, TGF-beta, which by itself will not induce actin expression. We show that the Xenopus embryo contains an mRNA encoding a protein highly homologous to basic FGF. These results together with the identification of a maternal mRNA with strong homology to TGF-beta, suggest that molecules closely related to FGF and TGF-beta are the natural inducers of mesoderm in vertebrate development.  相似文献   

6.
7.
BACKGROUND: Signals from anterior endodermal cells that express the homeobox gene Hex initiate development of the most rostral tissues of the mouse embryo. The dorsal/anterior endoderm of the Xenopus gastrula, which expresses Hex and the putative head-inducing gene cerberus, is proposed to be equivalent to the mouse anterior endoderm. Here, we report the origin and signalling properties of this population of cells in the early Xenopus embryo. RESULTS: Xenopus anterior endoderm was found to derive in part from cells at the centre of the blastocoel floor that express XHex, the Xenopus cognate of Hex. Like their counterparts in the mouse embryo, these Hex-expressing blastomeres moved to the dorsal side of the Xenopus embryo as gastrulation commenced, and populated deep endodermal adjacent to Spemann's organiser. Experiments involving the induction of secondary axes confirmed that XHex expression was associated with anterior development. Ventral misexpression of XHex induced ectopic cerberus expression and conferred anterior signalling properties to the endoderm. Unlike the effect of misexpressing cerberus, these signals could not neuralise overlying ectoderm. CONCLUSIONS: XHex expression reveals the unexpected origin of an anterior signalling centre in Xenopus, which arises in part from the centre of the blastula and localises to the deep endoderm adjacent to Spemann's organiser. Signals originating from these endodermal cells impart an anterior identity to the overlying ectoderm, but are insufficient for neural induction. The anterior movement of Hex-expressing cells in both Xenopus and mouse embryos suggests that this process is a conserved feature of vertebrate development.  相似文献   

8.
Gastrulation of the vertebrate embryo culminates in the formation of three primary germ layers: ectoderm, mesoderm and endoderm. The endoderm contributes to the lining of the gut and the associated organs. New components of the molecular pathway for endoderm specification have been identified in the zebrafish and Xenopus. In the mouse, the activity of orthologous factors is involved with the allocation and differentiation of the definitive endoderm. Morphogenetic interactions between the endoderm and the other germ layer derivatives are critical for the morphogenesis of head structures and organogenesis of gut derivatives.  相似文献   

9.
Specification of the dorsoventral (DV) axis is critical for the subsequent differentiation of regional fate in the primary germ layers of the vertebrate embryo. We have identified a novel factor that is essential for dorsal development in embryos of the frog Xenopus laevis. Misexpression of Xenopus mab21-like 3 (Xmab21l3) dorsalizes gastrula-stage mesoderm and neurula-stage ectoderm, while morpholino-mediated knockdown of Xmab21l3 inhibits dorsal differentiation of these embryonic germ layers. Xmab21l3 is a member of a chordate-specific subclass of a recently characterized gene family, all members of which contain a conserved, but as yet ill-defined, Mab21 domain. Our studies suggest that Xmab21l3 functions to repress ventralizing activity in the early vertebrate embryo, via regulation of BMP/Smad and Ras/ERK signaling.  相似文献   

10.
During blastula and gastrula stages of Xenopus development, cells become progressively and asynchronously committed to a particular germ layer. We have analysed the expression of genes normally expressed in ectoderm, mesoderm or endoderm in individual cells from early and late gastrula embryos, by both in situ hybridization and single-cell RT-PCR. We show that at early gastrula stages, individual cells in the same region may express markers of two or more germ layers, and 'rogue' cells that express a marker outside its canonical domain are also observed at these stages. However, by the late gastrula stage, individual cells express markers that are more characteristic of their position in the embryo, and 'rogue' cells are seen less frequently. These observations exemplify at the gene expression level the observation that cells of the early gastrula are less committed to one germ layer than are cells of the late gastrula embryo. Ectodermal cells induced to form mesendoderm by the addition of Activin respond by activating expression of different mesodermal and endodermal markers in the same cell, recapitulating the response of marginal zone cells in the embryo.  相似文献   

11.
12.
The experiments described in this paper were designed to compare the normal fates of animal pole blastomeres of Xenopus laevis with their state of commitment. Single animal pole blastomeres were labeled with a lineage marker and transplanted into the blastocoels of host embryos of different stages. The distribution of labeled daughter cells in the tadpole reflects the state of commitment of the parent cell at the time of transplantation. It is known that cells from the animal pole of the early blastula normally contribute predominantly to ectoderm with a small, but significant, contribution to the mesoderm. We show that on transplantation to the blastocoels of late blastula host embryos these blastomeres are pluripotent, contributing to all three germ layers. At later stages the normal fate of these cells becomes restricted solely to ectoderm and concomitantly the proportion of pluripotent cells is reduced, although the results depend upon the stage of the host embryo. Blastomeres from late blastula donors transplanted to mid gastrulae contribute solely to ectoderm in 34% of cases; however, in earlier hosts, when the vegetal hemisphere cells have "mesoderm inducing" or "vegetalizing" activity, late blastula animal pole blastomeres contribute to mesoderm and endoderm rather than ectoderm. Thus during the blastula stage animal pole cells pass from pluripotency to a labile state of commitment to ectoderm.  相似文献   

13.
This review discusses formation of the vertebrate anteroposterior (AP) axis, focusing on the dorsal ectoderm, which gives rise to the nervous system, using the frog Xenopus as a model. After summarizing classical models of AP neural patterning, we describe recent molecular studies that are encouraging re-examination of these models. Such studies have shown that AP ectodermal patterning occurs by the onset of gastrulation, much earlier than previously thought. The identity of tissues that determine AP pattern is discussed, and the definition of the Organizer is reconsidered. The activity of factors secreted by inducing tissues in early patterning decisions is assessed and formulated into a revised model for Xenopus AP neural patterning. Finally, AP ectodermal patterning in Xenopus dorsal ectoderm is compared to that of other germ layers, and to other vertebrates.  相似文献   

14.
The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos   总被引:15,自引:0,他引:15  
R J Detrick  D Dickey  C R Kintner 《Neuron》1990,4(4):493-506
N-cadherin is a calcium-dependent, cell adhesion molecule that has been proposed to play a role in morphogenesis in vertebrate embryos. Throughout early neural development, N-cadherin is expressed during the morphogenetic changes that occur when ectoderm, in response to neural induction, forms a neural plate and tube. To study the role of N-cadherin in these processes, cDNA clones encoding Xenopus laevis N-cadherin were isolated and used to study the expression of N-cadherin in frog embryos. These studies showed that N-cadherin RNA is not expressed at detectable levels in early cleavage embryos or in isolated ectoderm in the absence of neural induction. However, N-cadherin RNA rapidly appeared in ectoderm exposed to a heterologous neural inducer, indicating that N-cadherin expression, as an early response to induction, precedes the morphogenetic events associated with early neural development. The role of N-cadherin in these morphogenetic events was studied by ectopically expressing N-cadherin in the ectoderm of embryos prior to induction. The ectopic expression of this protein in ectoderm led to the formation of cell boundaries and to severe morphological defects. These results are consistent with the hypothesis that the morphogenetic changes associated with early neural development are controlled, in part, by the induced expression of N-cadherin in the neural plate.  相似文献   

15.
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.  相似文献   

16.
The canonical Wnt/β-catenin pathway is a key regulator of body plan organization and axis formation in metazoans, being involved in germ layer specification, posterior growth and patterning of the anteroposterior axis. Results from animals spanning a wide phylogenetic range suggest that a unifying function of β-catenin in metazoans is to define the posterior/vegetal part of the embryo. Although the specification of vegetal territories (endoderm) by β-catenin has been demonstrated in distantly related animals (cnidarians, a protostome, echinoderms and ascidians), the definition of the posterior part of the embryo is well supported only for vertebrates and planarians. To gain insights into β-catenin functions during deuterostome evolution, we have studied the early development of the direct developing hemichordate Saccoglossus kowalevskii. We show that the zygote is polarized after fertilization along the animal-vegetal axis by cytoplasmic rearrangements resembling the ascidian vegetal contraction. This early asymmetry is translated into nuclear accumulation of β-catenin at the vegetal pole, which is necessary and sufficient to specify endomesoderm. We show that endomesoderm specification is crucial for anteroposterior axis establishment in the ectoderm. The endomesoderm secretes as yet unidentified signals that posteriorize the ectoderm, which would otherwise adopt an anterior fate. Our results point to a conserved function at the base of deuterostomes for β-catenin in germ layer specification and to a causal link in the definition of the posterior part of the embryonic ectoderm by way of activating posteriorizing endomesodermal factors. Consequently, the definition of the vegetal and the posterior regions of the embryo by β-catenin should be distinguished and carefully re-examined.  相似文献   

17.
The development of the vertebrate nervous system is initiated in amphibia by inductive interactions between ectoderm and a region of the embryo called the organizer. The organizer tissue in the dorsal lip of the blastopore of Xenopus and Hensen's node in chick embryos have similar neural inducing properties when transplanted into ectopic sites in their respective embryos. To begin to determine the nature of the inducing signals of the organizer and whether they are conserved across species we have examined the ability of Hensen's node to induce neural tissue in Xenopus ectoderm. We show that Hensen's node induces large amounts of neural tissue in Xenopus ectoderm. Neural induction proceeds in the absence of mesodermal differentiation and is accompanied by tissue movements which may reflect notoplate induction. The competence of the ectoderm to respond to Hensen's node extends much later in development than that to activin-A or to induction by vegetal cells, and parallels the extended competence to neural induction by axial mesoderm. The actions of activin-A and Hensen's node are further distinguished by their effects on lithium-treated ectoderm. These results suggest that neural induction can occur efficiently in response to inducing signals from organizer tissue arrested at a stage prior to gastrulation, and that such early interactions in the blastula may be an important component of neural induction in vertebrate embryos.  相似文献   

18.
The early development of metazoans is mainly regulated by differential translation and localization of maternal mRNAs in the embryo. In general, these processes are orchestrated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated region (UTR) of their target RNAs. Hermes is an RNA-binding protein, which contains a single RNA recognition motif (RRM) and is found in various vertebrate species from fish to human. In Xenopus laevis, Hermes mRNA and protein are localized in the vegetal region of oocytes. A subpopulation of Hermes protein is concentrated in a specific structure in the vegetal cortex, called the germ plasm (believed to contain determinants of the germ cell fate) where Hermes protein co-localizes with Xcat2 and RINGO/Spy mRNAs. The level of total Hermes protein decreases during maturation. The precocious depletion of Hermes protein by injection of Hermes antisense morpholino oligonucleotide (HE-MO) accelerates the process of maturation and results in cleavage defects in vegetal blastomeres of the embryo. It is known that several maternal mRNAs including RINGO/Spy and Mos are regulated at the translational level during meiotic maturation and early cleavage in Xenopus. The ectopic expression of RINGO/Spy or Mos causes resumption of meiotic maturation and cleavage arrests, which resemble the loss of Hermes phenotypes. We found that the injection of HE-MO enhances the acceleration of maturation caused by the injection of RINGO/Spy mRNA, and that Hermes protein is present as mRNP complex containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. We propose that as an RNA-binding protein, Hermes may be involved in maturation, cleavage events at the vegetal pole and germ cell development by negatively regulating the expression of RINGO/Spy, Mos, and Xcat2 mRNAs.  相似文献   

19.
The formation of the vertebrate body plan begins with the differentiation of cells into three germ layers: ectoderm, mesoderm and endoderm. Cells in the endoderm give rise to the epithelial lining of the digestive tract, associated glands and respiratory system. One of the fundamental problems in developmental biology is to elucidate how these three primary germ layers are established from the homologous population of cells in the early blastomere. To address this question, ectoderm and mesoderm development have been extensively analyzed, but study of endoderm development has only begun relatively recently. In this review, we focus on the 'where', 'when' and 'how' of endoderm development in four vertebrate model organisms: the zebrafish, Xenopus, chick and mouse. We discuss the classical fate mapping of the endoderm and the more recent progress in characterizing its induction, segregation and regional specification.  相似文献   

20.
The African clawed frog, Xenopus laevis, has long been a model animal for the studies in the fields of animal cloning, developmental biology, biochemistry, cell biology, and physiology. With the aid of Xenopus, major molecular mechanisms that are involved in embryonic development have been understood. Germ layer formation is the first event of embryonic cellular differentiation, which is induced by a few key maternal factors and subsequently by zygotic signals. Meanwhile, another type of signals, the pluripotency factors in ES cells, which maintain the undifferentiated state, are also present during early embryonic cells. In this review, the functions of the pluripotency factors during Xenopus germ layer formation and the regulatory relationship between the signals that promote differentiation and pluripotency factors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号