首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable isotope labeling of amino acids in cell culture was used for Bifidobacterium longum. A comprehensive proteomic strategy was developed and validated by designing an appropriate semidefined medium that allows stable replacement of natural leucine by [13C6]leucine. Using this strategy, proteins having variations of at least 50% in their expression rates can be quantified with great confidence.  相似文献   

2.
3.
The aim of this study is to develop a strategy for maximum production of a target product with a simplified model derived from a metabolic reaction network through an example of lysine production. Based on the model, a search for the optimal specific growth rate profile was conducted among the available conditions of batch fermentation based on the derived model, when the total fermentation time was fixed. The optimal specific growth rate was obtained as a boundary control: initially, the specific growth rate was maintained at a maximum value and was subsequently switched to a critical value giving the maximum specific production rate. To make the specific growth rate follow this optimal profile as accurately as possible in batch mode, first, an appropriate initial concentration of leucine was employed in the experiment. Second, the feeding strategy of leucine was further studied. The specific growth rate profile with feeding was closer to the optimal one and the amount of lysine produced at the final stage of fermentation was increased about twofold, compared to that in the batch fermentation. Finally, the strategy was summarized as an algorithm for general use of this method.  相似文献   

4.
A leucine auxotroph strain of Saccharomyces cerevisiae was used to study plasmid stability and expression using a recombinant plasmid, which contained a foreign gene for firefly luciferase (luc). This recombinant yeast was tested in a series of continuous cultures in semi-defined media with varying concentrations of yeast extract in order to study its effect on stability. While the biomass concentration and luciferase activity increased with increasing concentrations of yeast extract, the plasmid stability declined. An analysis of the growth rates showed that the recombinants enjoyed a growth rate advantage over the plasmid-free cells at critically low yeast extract concentrations, possibly due to leucine starvation in the media. A two-stage cultivation strategy was designed in order to create a yeast extract limited environment so that plasmid-free cells could not grow and overtake the recombinant cells. The cells were cultivated in selective media in the first stage, and then transferred continuously to the second stage where the media was enriched by feeding yeast extract. The feed rate was kept low in order to ensure yeast extract and hence leucine starvation, thereby selecting against the plasmid-free cells. This strategy resulted in a stable existence of recombinant cells, which stabilized around 60% at steady state during the tested period of cultivation. The complex nitrogen feed helped in increasing the cell density and volumetric activity by approximately 9 and 18-fold respectively with respect to that achieved in minimal medium. The experimental data was used to formulate a mathematical model to predict cell growth and plasmid stability in two-stage cultivation, which correctly explained the experimental data.  相似文献   

5.
The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the alpha-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains.  相似文献   

6.
Commercial interest in microbial lipids is increasing due to their potential use as feedstock for biodiesel production. The supply of NADPH generated by malic enzyme (ME; NADP+-dependent; EC 1.1.1.40) has been postulated as being the rate-limiting step for fatty acid biosynthesis in oleaginous fungi, based mainly on data from the zygomycete Mucor circinelloides studies. This fungus contains five genes that code for six different ME isoforms. One of these genes, malA, codes for the isoforms III and IV, which have previously been associated with lipid accumulation. Following a strategy of targeted integration of an engineered malA gene, a stable strain overexpressing malA and showing high ME activity has been obtained, demonstrating the feasibility of this strategy to overexpress genes of biotechnological interest in M. circinelloides. This is the first report showing the integration and overexpression of a gene in Zygomycetes. Unexpectedly, the genetically modified strain showed a lipid content similar to that of a prototrophic non-overexpressing control strain, suggesting that another limiting step in the fatty acid synthesis pathway may have been revealed as a consequence of the elimination of malic enzyme-based bottleneck. Otherwise, the fact that prototrophic strains showed at least a 2.5-fold increase in lipid accumulation in comparison with leucine auxotrophic strains suggests that a wild-type leucine biosynthetic pathway is required for lipid accumulation. Moreover, increasing concentrations of leucine in culture medium increased growth of auxotrophs but failed to increase lipid content, suggesting that the leucine synthesized by the fungus is the only leucine available for lipid biosynthesis. These results support previous data postulating leucine metabolism as one of the pathways involved in the generation of the acetyl-CoA required for fatty acid biosynthesis.  相似文献   

7.
8.
Use of an ion-exchange resin assay has shown that leucine is bound to a component of a dialyzed extract of yeast. Leucine binding may be related to in vivo uptake of the amino acid. A yeast strain with a 30-fold lower affinity for leucine uptake in vivo has a parallel reduction in affinity for in vitro leucine binding; the rate of leucine uptake in wild-type yeast can be increased four- to fivefold by growth on leucine as a sole nitrogen source. Under these conditions, the specific activity of the leucine-binding component also increases over threefold. Regulation of leucine uptake was studied by using wild-type strain 60615 and a mutant 60615/fl(2) with a constitutively elevated leucine uptake system. Leucine pool formation in the mutant was accompanied by an overshoot, leading to a loss of leucine from the pool. The phenomenon could be observed in the wild type under certain conditions. The mechanism of this process was examined. The leucine uptake system was found to be stable in the absence of protein synthesis. The rate of leucine uptake increased on reduction of the pool of amino acids, and in strain 60615/fl(2) the ability to overshoot was rapidly recovered on depletion of the leucine pool. The results suggest a control of leucine uptake by feedback inhibition, in which leucine or other amino acids, e.g., isoleucine, inhibit leucine uptake. The results do not exclude control by a rapidly activated-inactivated system.  相似文献   

9.
Starch digestion in the small intestines of the dairy cow is low, to a large extent, due to a shortage of syntheses of α-amylase. One strategy to improve the situation is to enhance the synthesis of α-amylase. The mammalian target of rapamycin (mTOR) signalling pathway, which acts as a central regulator of protein synthesis, can be activated by leucine. Our objectives were to investigate the effects of leucine on the mTOR signalling pathway and to define the associations between these signalling activities and the synthesis of pancreatic enzymes using an in vitro model of cultured Holstein dairy calf pancreatic tissue. The pancreatic tissue was incubated in culture medium containing l-leucine for 3 h, and samples were collected hourly, with the control being included but not containing l-leucine. The leucine supplementation increased α-amylase and trypsin activities and the messenger RNA expression of their coding genes (P <0.05), and it enhanced the mTOR synthesis and the phosphorylation of mTOR, ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 (P <0.05). In addition, rapamycin inhibited the mTOR signal pathway factors during leucine treatment. In sum, the leucine regulates α-amylase and trypsin synthesis in dairy calves through the regulation of the mTOR signal pathways.  相似文献   

10.
Addition of 0.1% casein hydrolysate to a minimal growth medium decreased membrane-bound transhydrogenase activity in Escherichia coli by about 80%. Of the amino acids added individually to the growth medium, only leucine and, to a lesser extent, methionine and alanine were effective, alpha-Ketoisocaproate- and leucine-containing peptides repressed the activity, and leucine also repressed activity in adenyl cyclase-deficient and relaxed strains. Derepression of transhydrogenase followed the removal of leucine from the growth medium and was sensitive to rifampin and chloramphenicol. A phosphoglucoisomerase-deficient strain that was forced to use the hexose monophosphate shunt exclusively had normal levels of transhydrogenase, which was repressed by leucine. Transhydrogenase activity doubled in mutants lacking either of the shunt dehydrogenases but was still repressed by leucine. In strains constitutive for the leucine biosynthetic operon, transhydrogenase was repressed by leucine but in strains livR and lst R, with leucine transport resistant to leucine repression, transhydrogenase was not repressed by leucine. These data suggest that transhydrogenase may have a function in the transport of branched-chain amino acids. In a hisT strain (which has altered leucyl-tRNA), transhydrogeanse was at a repressed level without the addition of leucine, suggesting that leucyl-tRNA may be involved in the regulation.  相似文献   

11.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

12.
Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.  相似文献   

13.
The protein folding problem has long been a formidable challenge. Here we present a synthetic natural motif approach that exploits small preexisting structural models for the dissection of forces important in protein folding. An example for this approach is shown in the modification of a 31-residue leucine zipper peptide with the helix-breaking amino acid glycine and the hydrogen bond-breaking imino acid sarcosine. Circular dichroism and NMR experiments have shown that the glycine-modified leucine zipper peptide adopts a stable helical conformation similar to the native conformation while the sarcosine-modified leucine zipper peptide adopts a random coil conformation. These results provide valuable insight into the current controversy over the relative importance of long-range side chain-side chain interactions versus local backbone interactions in protein structure and suggest that the natural motif strategy may represent a useful model to study protein folding.  相似文献   

14.
In freshly prepared uninjected folliculated oocytes, Na(+)-independent leucine uptake is mediated predominantly by a system L-like transport system. Removal of follicular cells, however, results in an irreversible loss of this transport activity. When total poly(A)+ mRNA derived from Chinese hamster ovary (CHO) cells was injected into prophase-arrested stage V or VI Xenopus laevis oocytes, enhanced expression of Na(+)-independent leucine transport was observed. The injected mRNAs associated with increased levels of leucine uptake were between 2 and 3 kb in length. The newly expressed leucine transport activity exhibited important differences from the known characteristics of system L, which is the dominant Na(+)-independent leucine transporter in CHO cells as well as in freshly isolated folliculated oocytes. The CHO mRNA-dependent leucine uptake in oocytes was highly sensitive to the cationic amino acids lysine, arginine, and and ornithine (> 95% inhibition). As with the leucine uptake, an enhanced lysine uptake was also observed in size-fractionated CHO mRNA-injected oocytes. The uptakes of leucine and lysine were mutually inhibitable, suggesting that the newly expressed transporter was responsible for uptakes of both leucine and lysine. The inhibition of uptake of lysine by leucine was Na+ independent, thus clearly distinguishing it from the previously reported endogenous system y+ activity. Furthermore, the high sensitivity to tryptophan of the CHO mRNA-dependent leucine transport was in sharp contrast to the properties of the recently cloned leucine transport-associated gene from rat kidney tissue, although leucine transport from both sources was sensitive to cationic amino acids. Our results suggest that there may be a family of leucine transporters operative in different tissues and possibly under different conditions.  相似文献   

15.
The effect of ethanol upon the oxidation of leucine by the rat in vivo was determined. The rate of leucine oxidation was not significantly altered by chronic administration of ethanol (20% v/v solution as drinking water for 28 days). Ethanol administered acutely (8 g kg 0.73) significantly decreased leucine oxidation by the rat in vivo. This decrease appeared to be independent of a more general depression of oxidation metabolism. Decrease in leucine oxidation by ethanol is discussed in relation to the regulation of tissue leucine pool sizes in vivo.  相似文献   

16.
The leucine analogue 5',5',5',-trifluoroleucine (fluoroleucine) replaced leucine for repression of the isoleucine-valine biosynthetic enzymes in Salmonella typhimurium. In contrast, the analogue had no effect on derepression of the leucine biosynthetic enzymes in leucine auxotrophs grown on limiting amounts of leucine. The effect of fluoroleucine on repression appeared to be specific for leucine since derepression of the isoleucine-valine enzymes due to an isoleucine or valine limitation was not affected by the analogue. The prevention of derepression by fluoroleucine was probably due to repression and not to the formation of false proteins, since the analogue had no effect on the derepression of a number of enzymes unrelated to the isoleucine-valine pathway. Fluoroleucine was able to attach to leucine transfer ribonucleic acid (tRNA) as evidenced by the ability of the analogue to protect about 70% of leucine tRNA from oxidation by periodate. We propose that the differential effects of fluoroleucine on repression are due to differences in the ability of the analogue to bind to the various species of leucine tRNA.  相似文献   

17.
dl-4-Azaleucine (5 x 3(-3)m) added to exponentially growing cells of Salmonella typhimurium resulted in an abrupt cessation of growth lasting 4 to 8 hr followed by a resumption of division. The transitory nature of inhibition was not due to the instability or modification of the analogue or to a derepression of leucine-forming enzymes. Of many compounds tested, leucine served most efficiently to reverse 4-azaleucine-induced inhibition. Inhibition of growth can be explained by the fact that 4-azaleucine inhibits alpha-isopropylmalate synthase, the first enzyme unique to leucine biosynthesis. The analogue was a poor inhibitor of both the transamination of alpha-ketoisocaproate to leucine and the charging of leucine to transfer ribonucleic acid. With a leucine auxotroph starved for leucine, the analogue was incorporated into protein specifically in place of leucine. Such incorporation was accompanied by the death of almost all of the cells.  相似文献   

18.
Cardiac hypertrophy is generated in response to hemodynamic overload by altering steady-state protein metabolism such that the rate of protein synthesis exceeds the rate of protein degradation. To determine the relative contributions of protein synthesis and degradation in regulating cardiac hypertrophy in mice, a continuous infusion strategy was developed to measure myocardial protein synthesis rates in vivo. Osmotic mini-pumps were implanted in the abdominal cavity to infuse radiolabeled leucine in mice that are conscious and ambulatory. Protein synthesis rates were calculated by measuring incorporation of leucine into myocardial protein over 24 h prior to each time point and dividing by the specific radioactivity of plasma leucine. Compared to sham-operated controls, fractional rates of protein synthesis (K(s)) increased significantly at days 1 and 3 of TAC, but was lower on day 7 and returned to control values by day 14. These changes coincided with the curvilinear increase in LV mass that characterizes the hypertrophic response. Fractional rates of protein degradation (K(d)) were calculated by subtracting the rate of myocardial growth from the corresponding K(s) value. K(d) fell at days 1 and 3 of TAC, increased at day 7 and returned to control on day 14. Thus, the increase in LV mass generated in response to pressure overload is caused by acceleration of K(s) and suppression of K(d). As the growth rate slows, a new steady-state is achieved once the hypertrophic response is completed.  相似文献   

19.
Although it has been known that protein synthesis is suppressed in sepsis, which cannot be corrected by leucine supplement (also known as leucine resistance), the molecular signaling mechanism remains unclear. This study aimed to investigate the AMP‐activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway in sepsis‐induced leucine resistance and its upstream signals, and to seek a way to correct leucine resistance in sepsis. Sepsis was produced by cecal ligation and puncture (CLP) model in rat. Both septic rats and sham operation rat received total parenteral nutrition (TPN) with or without leucine for 24 h, and then protein synthesis and AMPK/mTOR and protein kinase B (PKB) were tested. In vitro C2C12 cells were treated with or without leucine, and we tested the AMPK/mTOR pathway and protein synthesis. We blocked AMPK by compound C and stimulated it by 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR) individually. The results showed that AMPK was highly phosphorylated and suppressed mTOR/S6K1 activation in CLP rats. In vitro when AMPK was activated by AICAR, protein synthesis was suppressed and leucine resistance was observed. High phosphorylation of AMPK was accompanied by PKB inactivation in CLP rats. When PKB was blocked, both AMPK activation and leucine resistance were observed. In CLP rats, nutrition support with intensive insulin therapy reversed leucine resistance by activating PKB and suppressing AMPK phosphorylation. These findings suggest that high phosphorylation of AMPK induced by PKB inactivation in sepsis suppresses mTOR, S6K1 phosphorylation, and protein synthesis and leads to leucine resistance. Intensive insulin treatment can reverse leucine resistance by suppressing AMPK activation through activation of PKB.  相似文献   

20.
从人发中连续提取亮氨酸和胱氨酸工艺初探   总被引:8,自引:1,他引:7  
介绍了一种从人发中连续提取亮氨酸和胱氨酸的新工艺。人发用盐酸水解后 ,将水解液减压赶酸 ,再直接加入邻二甲苯 - 4-磺酸沉淀亮氨酸 ,所得沉淀经氨解及后续的精制过程可得亮氨酸精品 ,沉淀亮氨酸后所得的母液按传统的工艺用液氨和得胱氨酸粗品 ,再经一次精制中和可得胱氨酸精品。亮氨酸和胱氨酸的收率分别可达 4 .9%和 7.8% ,产品质量符合日本味之素标准  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号